论文部分内容阅读
提出了一种新型的人工免疫网络模型TSIN。通过应用包括克隆选择、基于合作的变异以及抗体抑制在内的免疫算子,抗体种群从单一的个体逐步分化繁殖成为有效的聚类。这些聚类既能够准确地表示原始数据集在形态空间中的分布特性,又能够较好地拟合局部分布形态,这些都为高维数据的分析提供了良好的基础。描述了TSIN学习算法的总体框架,详细分析了其中的关键环节。仿真实验表明,TSIN具有良好的数据分析能力,且较传统的自组织神经网络方法更能体现数据中蕴含的拓扑关系和分布特性。