论文部分内容阅读
1977年,为了研究平面上插值结点的分布情况,使之能够惟一确定一个二元Lagrange插值多项式,Chung和Yao在[5]中首次引入几何特征(GC)这一概念,并使得所构造出的Lagrange函数是一次实系数多项式乘积的形式.1982年Gasea和Maeztu在[6]中给出了平面上任何一个满足GC条件且含(n+2)(n+1)/2个点的集合必有其中n+1点共线的猜想.后来,Carnicer与Gasea在[3]中对该猜想在n≤4的情况下给出了证明,并在[4]中从亏量的角度对满足GC条件的结点集进行了探讨.此文