论文部分内容阅读
在线多示例目标跟踪算法无法判别目标丢失以及无法适应目标尺度的变化。提出了一种基于视觉字典的在线多示例目标跟踪算法。算法将视觉字典和多示例跟踪分别作为检测器和跟踪器,利用互反馈技术提高跟踪性能。跟踪器完成目标的跟踪并为视觉字典的构建和更新提供训练样本;检测器则对跟踪器的结果(候选样本)进行判定,目标丢失时,暂停跟踪并重新检测目标,目标未丢失时,利用Ransac算法获得目标的尺度变换系数并在新尺度下更新跟踪器。为了提高目标丢失判别的准确性,提出了一种局部随机抽样的直方图相似性度量技术,采用局部划分思想和