论文部分内容阅读
预测性维护的应用能够极大地降低企业运维成本,而设备剩余使用寿命(Remaining Useful Life,RUL)预测是预测性维护的关键技术之一.针对传统RUL预测算法难以提取时序数据的潜藏特征以及特征权重分配不合理的问题,本文提出一种基于注意力机制(Attention Mechanism)的卷积长短时记忆(Convolution Long-Short Term Memory,ConvLSTM)预测模型,该模型充分利用LSTM网络处理和预测长期时间序列的优势,并引入注意力机制对产生显著影响的特征因子提高权重,极大地优化了模型的时空特征提取能力.为验证模型预测效果,本文以NASA提供的CMAPSS数据集为对象进行实验,以均方根误差(Root Mean Squared Error,RMSE)和数据集自定义的Score为评价指标,将预测结果与其他RUL预测算法作比对,证明了该模型具有更佳的预测准确性.