基于AdaBoost-RBF算法与DSmT的变压器故障诊断技术

来源 :电力自动化设备 | 被引量 : 0次 | 上传用户:eastwood
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对目前浅层机器学习理论在变压器故障诊断上精度不高以及大多数诊断方法参考的信息特征量单一的现状,提出一种基于AdaBoost-RBF算法与Dezert-Smarandache理论(DSmT)的变压器故障诊断方法。选择反映变压器故障信息的油中溶解气体、试验及产气率数据构成诊断参量空间,利用AdaBoost算法改进RBF神经网络算法,应用AdaBoost-RBF算法搭建并行的训练单元构造变压器故障诊断识别框架的基本信度赋值(BBA)。基于多源信息融合的思想,应用DSmT对基本信度赋值进行融合得到最终诊断结论,
其他文献
提出了一种基于帝国殖民竞争算法优化支持向量机的变压器故障诊断模型。对支持向量机进行了非线性和多分类变换,构建了k-折平均分类准确率目标函数,建立了帝国殖民竞争算法优
基于机器学习的智能孤岛检测方法能有效地提高防孤岛保护的性能,但现有方法皆采用离线学习方案,对配电网因运行条件变化而导致的概念漂移现象缺乏自适应性。提出了一种具有在
主动配电网为高渗透率分布式可再生能源接入提供了有效途径。针对风能等可再生能源所固有的间歇性、波动性与随机性引起的功率波动问题,在配电网中引入储能系统作为可控负荷,