论文部分内容阅读
针对传统分层聚类方法运算速度较慢的问题,提出一种基于矢量量化的时序说话人聚类方法。首先对各语音段的特征进行矢量量化得到各语音段的码本,然后采用贝叶斯信息判据计算各码本之间的距离,最后按时间先后顺序进行说话人聚类。采用会议和新闻语音数据进行测试,实验结果表明:会议语音的说话人聚类F值为73.47%,新闻语音的说话人聚类F值为80.00%;在处理速度方面,该方法比无矢量量化时序聚类方法提高了3.16倍,比传统分层聚类方法提高了53.31倍。