论文部分内容阅读
由于人体上肢运动链的高自由度,用传统的几何法、解析法、迭代法等求其逆解较为困难。遗传算法具有很好的寻优特性,但标准遗传算法在求解时容易陷入早熟收敛和后期搜索迟钝。为此,提出了一种改进型遗传算法(IGA)求解的方法。先构建人体上肢运动链的各关节单元,并用D-H方法建立其数学模型;然后仿人类种群现象实现遗传算法的种群多样化和种群初始化,设计具有自适应性能的交叉概率和变异概率算子,从而完成了对标准遗传算法的改进。通过对比仿真计算结果可得,改进后的遗传算法能以更大概率避免陷入早熟收敛和后期搜索迟钝,并以较少