论文部分内容阅读
提出一种基于近似最小闭包球原理的中文博客(Blog)话题分类方法。根据近似最小闭包球原理,将支持向量机的优化求解转换为近似最小闭包球求解,使得只需选择大规模数据集的一个核心子集参与分类器的训练过程,以提高Blog话题分类中大规模训练集的处理能力。在较大规模的Blog数据集上进行中文Blog特征选择及话题分类实验。实验结果表明,该方法不仅准确率可达到支持向量机同等的效果,且可减少训练时间,获得较好的Blog话题分类效果。