论文部分内容阅读
为了减轻人脸识别中表情以及姿态等因素变化对识别结果的影响,Xu提出了利用原始样本和对称样本的两步人脸识别算法。但当人脸图像受外在因素干扰产生较大变化时,该方法的识别结果并不理想。因此提出了一种基于因素分解模型的两步人脸识别算法。新算法在特征提取过程中利用因素分解模型将"身份因素"和"表情因素"从人脸图像中分离出来,加以控制。然后提取测试集图像中的新身份和新表情,并将其与训练集中的旧身份或旧表情相互作用,合成新的人脸图像。同时为了保证分类精度,在识别阶段针对原始样本和合成样本分别采用两步人脸识别的方法