论文部分内容阅读
区域性滑坡识别是滑坡灾害风险管理的基础,传统的识别工作主要依靠人力完成。在已有的滑坡自动识别研究中,方法上以机器学习为主,数据源上对谷歌地球影像应用较少,识别对象上多以与环境差异较大的新滑坡为主。结合深度学习方法和谷歌地球影像数据对中国典型黄土地区历史滑坡进行自动识别。首先,基于开源谷歌地球影像建立了历史黄土滑坡样本数据库,包含黄土滑坡2 498处;然后,利用掩膜区域卷积神经网络(mask region-based convolutional networks,Mask R-CNN)目标检测模块进行