论文部分内容阅读
A two-dimensional compressible MHD code has been used to numerically study the asymmetric driven reconnection processes in the vicinity of the magnetopause. The initial magnetic field configuration is assumed to be in a mechanical equilibrium state. The cases with identical temperatures ( Tm0/ Ts0 = 1 .0) and four different ratios of magnetic field strength ( Q = Bm0/Bs0 = 1.0, 1.5, 2.0, 2.5), and the case with Tm0/ Ts0 = 2.0 and O = 1.5 are investigated ( Bm0, Tm0 and B, Ts0 are the initial magnetic strength and temperature outside the current sheet on the magnetosphere and the mag-netosheath, respectively ). When the magnetic field on the magnetosheath side is set as southward, a recurrent formation of multiple magnetic bubbles with various scales occurs under the action of the inward plasma flow imposed at the left and right boundaries. In the simulation, some bubbles coalesce into a bigger one and then it is convected out of the simulation domain; the others are convected through the top boundary all
A two-dimensional compressible MHD code has been used to numerically study the asymmetric driven reconnection processes in the vicinity of the magnetopause. The initial magnetic field configuration is assumed to be in a mechanical equilibrium state. The cases with identical temperatures (Tm0 / Ts0 = 1 .0) and four different ratios of magnetic field strength (Q = Bm0 / Bs0 = 1.0, 1.5, 2.0, 2.5) and the case with Tm0 / Ts0 = 2.0 and O = 1.5 are investigated (Bm0, Tm0 and B, Ts0 are the initial magnetic strength and temperature outside the current sheet on the magnetosphere and the mag-netosheath, respectively). When the magnetic field on the magnetosheath side is set as southward, a recurrent formation of multiple magnetic bubbles with various scales occurs under the action of the inward plasma flow imposed at the left and right boundaries. In the simulation, some bubbles coalesce into a bigger one and then it is convected out of the simulation domain; the others are convected through t he top boundary all