论文部分内容阅读
针对并行GS(Gauss—Seidel)迭代算法中数据局部性差、同步和通信开销大的问题,首先改进传统GS迭代,提出了多层对称GS迭代算法.然后给出了以迭代空间条块序作为执行序的串行执行模型.该模型通过对迭代空间进行“时滞”划分,对迭代空间条块内部多次迭代计算提高算法的数据局部性.最后提出一种基于迭代空间条块的并行执行模型.该模型改进了迭代空间网格划分,并通过网格条块重排序减少了cache缺失率、通信启动和同步次数.实验结果表明,迭代空间交错条块并行算法比传统的区域分解方法和红黑排序并行算法具有更好的并行效