论文部分内容阅读
根据神经网络能以任意精度逼近任意非线性连续函数的特点,通过径向基函数神经网络构建非线性动态系统的辨识模型。针对该模型输入值超出径向基函数的映射区域时将导致系统辨识输出值为零的现象,提出了一种基于改进径向基函数结构的自回归系统辨识的方法,有效地消除了零现象。这使得自适应辨识模型在较大的输入向量下能够逼近实际系统的输出,从而提高了系统辨识的鲁棒性。该方法的可行性得到了仿真验证。