Robust solutions of Uncertain Capacity inventory control

来源 :电子世界 | 被引量 : 0次 | 上传用户:CaT614
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Abstract:This paper analyzes the uncertainties of air cargo and applies revenue management to solve the problem of air cargo capacity control.A robust capacity allocation model for a multiple-leg with multiple shipment types is established,which describe uncertainty of these parameters as a number of discrete scenarios,and obtain the optimal allocation with Mutation Particle Swarm Optimization.Simulation experiments show that this method can balance uncertainty of the model effectively and accord with actual situation.
  Keywords:Capacity Inventory Control;Uncertain Optimization;Robust Optimization;MPSO
  1.Introduction
  The revenue management technologies have been applied to air passenger transportation management successfully.Because cargos are perishable and large fixed costs while variable costs are small in the short run,the principles of revenue management also can be applied to air cargo industry.
  However,the successful methods of revenue management have not been widely applied in air cargo industry.Because of the differences between cargo transportation and passenger transportation,capacity inventory control can not be used in air cargo directly.The available cargo space of a fight is affected by many uncertain factors:
  (1)Cargo has different booking behavior,and cargo is a business-to-business market.Due to the complexity of the operation of cargo industry,forecasting and overbooking all include errors;
  (2)Because cargo capacity is measured in weight and volume and is dependent on the number of passengers,the amount of baggage,load factor and the amount of fuel on the plane,there are lots of differences between intending demands and actual demands.
  In some articles(see:Referenc-es[2][3][4]),the solutions of model have lots of defects.Gui Yunmiao and Zhu Jinfu chosen a dynamic programming [2]approach to the problem which,although theoretically very interesting,is computationally very demanding.Amaruchkul,Cooper and Gupta presented a Markov Decision Process model for a single flight with multiple shipment types [4].Because the Markov Decision Process has a high-dimensional state space,it is not practical to compute an optimal policy.With the development of airline network,the research on more complicated network capacity control is significant.So,a static but more efficient model is proposed in this paper.
  2.Multiple-leg Robust Optimization Model
  Due to difficulties and inconven-ience on mathematical treatment,the uncertainty is simply ignored in many cases,and the only care of uncertainty is taken by sensitivity analysis.This is a post-optimization tool for analyzing the stability of the solution.   There are some uncertain approaches which handle uncertainties directly-Expected Marginal Revenue model,Chance Constrained Programming and Dependent Chance Programming,and they can resolve some problems effectively.Expected Marginal Revenue model is widely applied on capacity inventory control.However,it is only suitable for those who do not care about risk.In fact,we do not always care about the maximization of expected marginal revenue.With the problem of uncertain system parameters,we often have to consider the reliability(or risk).Mulvey,Vanderbei and Zenios proposed the robust mathematical programming to handle uncertainty [5].Here instead of fixed data several scenarios are considered.
  In order to make the model of capacity inventory control more reasonable,robust optimization which can reflect the subjective attitude of decision maker is introduced to eliminate the inaccurate factors from forecasting errors.
  2.1 Stochastic Programming Model
  A multiple-leg flight consists of several legs and segments.A leg is defined as one flight between a take off and the next landing.A segment is the possible itinerary a shipment takes on a number of legs of the same flight.
  (1)Notation:
  :Index of leg;
  :Index of segment,;
  :Index of market-product;
  ;
  :Index of agent;
  :The usable volume of leg i;
  :The usable weight of leg i;
  :Index of revenue from selling bargain-product t of agent m;
  :Index of revenue from selling retail-product t;
  :Index of the average piece volume from bargain-product t of agent m;
  :Index of the average piece volume from retail-product t;
  :If bargain-product t of agent m use leg i,,otherwise ;
  :If retail-product t use leg i,then,otherwise;
  :Demand for bargain-product t of agent m;
  :Demand for retail-product t;
  (2)Decision variables:
  :Allocation for bargain-product t of agent m;
  :Allocation for retail-product t;
  So before signing sales agreement,the Stochastic Programming Model can be expressed as:
  (1)
  The constraints of gross volume and gross weight on one leg are shown as:
  (2)
  2.2 Robust Optimization Model
  The uncertain parameters of the model can be similarly described as a number of discrete scenarios,and a candidate solution is allowed to take care of the stability of the resulting solution and to violate the “scenario realizations” of the constraints.   In this case,the stochastic programming model can be translated into the following form:
  (3)
  Where is the decision-making factor of venture,and are the chastening factors of feasibility,they are all non-negative values. is the probability of uncertain scenario n,,,.In the objective function, is the average absolute deviation of expected revenue and revenue,the other part is the average absolute deviation of constraints.
  Because of the presence of absolute values,the calculation is complex.According to the method of linear transformation [6],the absolute value can be further transformed into:
  (4)
  Proof:In the problem(4),is equivalent to the form .
  Observing the constraints,we have.In other words,the minimum is .When ,the value of is 0,and.When,the value of is ,and .
  Therefore,the proposition is correct.
  Similarly,the programming(4)is equivalent to the programming(3).
  In the case of probability of scenarios,the model has been successfully translated into determi-nistic mathematical programming model.However,instead of being increasing of goods and the complex network,the calculation is more complex.So the application of intelligent optimization algorithm is especially important.
  3.Algorithm
  3.1 Mutation Particle Swarm Optim-ization
  Searching from a group of initial
  solutions,Particle Swarm Optimization (PSO)is easier to gain the global optimal solution.Due to the impact of individual optimal values and the global optimal value,particles have astringency.If the individual optimal values and the global optimal value remain unchanged within a period of time,the algorithm is very easy to fall into local optimal solution.So the Mutation Particle Swarm Optimization is adopted to solve the problem.
  (1)Mutation method:
  Based on the idea of survival of the fittest,selected a part of particles which have less individual value as the mutation of particle swarm(The proportion of the mutation of particle swarm is gradually reduced from 1.0 to 0.1).It can improve diversity of particles and avoid falling into local optimal solution.
  (2)Fitness function:
  Calculate the objective function value of each particle as its fit value.If the current individual fit value is superior to the individual optimal value,then set the current position as its best previous position.If the individual optimal value is superior to the global optimal value,then set the current position as the whole best previous position.   (3)Update:
  Positions of mutation particles are replaced by random values.Update the velocities and positions of other particles according to the following formulas:
  (5)
  Whereis inertia weight within the interval,is iterative number,are learning factors. is the optimal value of particle k in dimension t.is the global optimal value.
  3.2 Experimental results
  On the airline of PEK(Beijing)-CTU(Chengdu)-LXA(Lasa),assume that the selling bargain-products are unchangeable,and there are six kinds of market-products and three discrete scenarios.The demands and the revenues of each scenario are known.
  The size of the population is 30,and the maximum iterative time is 1000.When the optimal allocation is given as the following tables:
  Table 1 Optimal allocation of segment PEK-CTU
  Agent Capacity Allocation(T)
  F1 F2 F3 F4 F5 F6
  A-1 0.5 0.03 0.02 0 0.01 0.01
  A-2 0.3 0.04 0 0.01 0 0
  A-3 0.58 0.35 0 0.1 0 0
  A-4 2.43 4.63 0.15 0.22 0 0
  A-5 1.32 0 0 0 0.02 0
  Retail 1.34 0.14 0 0.04 0 0
  Table 2 Optimal allocation of segment PEK-LXA
  Agent Capacity Allocation(T)
  F1 F2 F3 F4 F5 F6
  A-1 0.01 0.06 0.25 0 0 0
  A-2 0.2 0.03 0 0.04 0 0
  A-3 1.28 0.8 0.03 0.17 0.01 0.3
  A-4 0.37 0.52 0 0 0 0
  A-5 0.82 0.09 0 0 0 0
  A-6 0.13 0.01 0 0.1 0.01 0
  A-7 0.01 0.06 0.25 0 0 0
  Retail 0.2 0.03 0 0.04 0 0
  Table 3 Optimal allocation of segment CTU-LXA
  Agent Capacity Allocation(T)
  F1 F2 F3 F4
  A-1 0.1 0.02 0 0
  A-2 0.01 0 0 0
  A-3 0.17 0.03 0 0
  A-4 0.02 0.02 0 0
  A-5 0.32 0 0 0
  Retail 0 0 0 0
  3.3 Decision-making factor of ventures
  The decision-making factor of venture expresses the aversion of decision-makers for risk.With the increase of decision-making factor of venture,optimal revenue gets lower and lower.The relationship between optimal revenues and chastening factors of feasibility can be seen from the following figure:
  Fig.1 The relationship between optimal revenue and decision-making factor of venture
  3.4 Chastening factors of feasi-bility
  The chastening factors are the negation deviations of demands.These values can be used to rectify the space allocation and to meet different demands.Decision-makers can increase a certain appointed cargo by using lower chastening factor.
  4.Conclusion   This paper applies revenue manag-ement technology to solve the problem of air cargo capacity Inventory control.For balancing uncertain parameters,we apply robust optimization method,which based on scenario-based description,to solve stochastic programming model and obtain the optimal allocation.From the result,we can see that,this strategy can make significant progress in air cargo management.This method may produce solutions which are not feasible for realizations of the constraints,even for the scenario ones.And the approach becomes a particular case of the robust counterpart scheme.
  We only researched on single-route and single flight,and ignored the transfer of demands from different flights on different routes.We hope to explore these and other related questions in the future.
  References
  [1]Karaesmen I Z,Three essays on Revenue Management, Columbia University,2001.
  [2]Gui Yun miao and Zhu Jin fu,Research on Dynamic Model of Air Cargo Slot Inventory Control.Forecasting,2006(6):53-04.
  [3]K.Huang and W.Hsu,Revenue Management for Air Cargo Space with Supply Uncertainty,Proceedings of the Eastern Asia Society for Transportation Studies,2005:570-580.
  [4]K.Amaruchkul,W.l.Cooper,D.Gupta,Single-Leg Air-Cargo Revenue Management,Working Paper,2005(3).
  [5]Mulvey J M,Vanderbei R J and Zenios S A,Robust Optimization of Large-scale System,Operations Research,1995(38).
  [6]Li H L,An Efficient Method for Solving Linear Goal Programming Problems,Journal of Optimization Theory and Application,1996.90(2).
  [7]Li Yu and Luo Li,Research on Capacity Inventory Control Model of Air cargo Revenue Management,2008(18):68-02.
其他文献
【摘要】本文结合教学改革形势和电类课程教学的实际,介绍了电路分析基础网络课程建设的探索与实践,含网络课程的目标功能、基本内容、特点和作用效果等。  【关键词】网络课程;网络教材;教学设计  《电路分析基础》课程是通信、电子等本科专业的一门学科基础核心课程,该课程理论严密,逻辑性强,综合性强,其教学任务是引导学生掌握电路的基本概念、基本理论和电路分析的基本方法,为后续课程的学习提供必要的理论基础知识
期刊
【摘要】本文以湘貴地区信息用户为研究对象,借鉴联合分析的基本理论,并结合公共图书馆的实际,探讨当地信息用户对公共图书馆的馆藏量、馆藏结构、服务手段、建筑设计、服务环境、专业队伍等的偏好程度,以期在公共图书馆资源建设过程中进行合理布局,最大程度满足当地信息用户的需求。  【关键词】公共图书馆;联合分析;偏好程度  1.湘贵地区信息用户偏好研究现状分析  湖南西部(湘西)与贵州省毗邻的铜仁地区是典型的
期刊
【摘要】针对铅酸蓄电池充放电电流存在的一些问题,以霍尔效应原理为基础,利用霍尔传感器其精度高、线性好、頻带宽、响应快等优点,设计了霍尔传感器对铅酸蓄电池充放电电流检测的实现。本文着重介绍了监测系统组成,原理以及其应用。通过检测充放电电流,电池组单节电池电压等参数来实现对铅酸蓄电池进行监测。  【关键词】霍尔传感器;铅酸蓄电池;测试系统  1.引言  铅酸蓄电池从其产生到发展已经有一百多年的历史,其
期刊
【摘要】超声波测距原理是通过测发射和接收超声波遇到障碍物反射回波的时间差t,再求出距离d。本文以AT89C52单片机为核心,设计出低成本、高精度测距仪,并给出了这种测距仪的硬件原理电路和主要的软件设计思路。  【关键词】超声波;单片机;测距  超声波具有能量消耗缓慢、指向性强、在介质中传播距离远等特性。由于各种介质对声波的传播都呈现一定的阻抗,当声波作用到两种介质的分界面时,如果这两种介质的声阻抗
期刊
【摘要】本文从薄膜光学课程的地位、作用、任务以及教学目的出发,结合研究生教学的特点,对课程的内容设置及教学方法进行了探索,并应用于教学实践,取得了良好的效果,对同类课程的建设有一定的指导意义。  【关键词】薄膜光学;课程建设  1.引言  随着科学技术的发展,对人才培养的要求也在相应提高,作为薄膜光学专业方向研究生的专业基础课,薄膜光学课程不但要求学生掌握薄膜光学基本理论,膜系设计方法,现代光学薄
期刊
【摘要】本文介绍了物联网概念和产业链结构,从产业的角度提出了有效商业模式应具备的要素,系统地分析了我国物联网产业尚未形成有效商业模式的原因,对构建我国物联网的有效商业模式提出了建设性的意见,进而对我国物联网产业发展的有效商业模式进行了构建,为我国物联网产业的发展提供一定的参考。  【关键词】物联网;产业链;有效商业模式  1.引言  “我国RFID市场呈现高速发展的态势,去年的市场规模已达85.1
期刊
【摘要】随着国内水电机组状态在线监测系统的不断发展,该系统先后在三峡左岸电站、右岸电站、紫坪铺电站、拉西瓦电站等一批大型水电机组的成功应用,取得了良好的效果,为保障大型水电机组的安全稳定运行发挥着重要的作用。本文从俄罗斯萨扬电站“8·17”事故原因之一“未能有效利用水电机组状态在线监测系统优化机组运行工况”谈起,结合水电机组状态在线监测系统指导某大型水电站实际生产的典型案例,深入阐述了水电机组实施
期刊
【摘要】将电磁脉冲技术应用在Al-25%Si-1.7%Mg合金(新型活塞材料)的热处理过程中,一方面能够降低Al-25%Si-1.7%Mg合金热处理过程中的能耗,从而降低生产成本,减少废气排放;另一方面,电磁脉冲技术可优化Al-25%Si-1.7%Mg合金的组织,提高其力学性能,使其在工业中得到更广泛的使用。  【关键词】Al-25%Si-1.7%Mg合金;电磁脉冲;时效  1.引言  近年来,人
期刊
【摘要】在传统教育观念及其模式的影响下,人力资源管理专业毕业生普遍存在实际工作能力较弱、创新研究能力不足等问题。本文针对人力资源管理教学过程存在的不足,提出以案例教学、项目化教学、实践教学为重点的教学改革建议以及建立健全职业能力培养体系的相关措施,以期对我国当前人力资源管理教学有所助益。  【关键词】人力资源管理;案例教学;项目化教学;实践教学;职业能力培养体系  一、绪言  作为一门实践性很强的
期刊
【摘要】《思想道德修养与法律基础》课是大学生的思政必修课,但其教材内容理论化、概念化的知识很多,故在实际教学中,该课程的教学效果往往不尽如人意。为提高课堂教学效果,本人在教学实践中做了些尝试,取得较好的效果,现小结于此,请各位同仁批评指正。  【关键词】课堂教学;改革  《思想道德修养与法律基础》课(以下简称《思法》课)是高等学校思想政治理论课程体系的重要组成部分,是帮助大学生提高思想道德素质和法
期刊