论文部分内容阅读
最小生成树数据描述方法在刻画高维空间样本点分布时,将所有图形的边作为新增虚拟样本以提供同类样本分布描述,这种描述存在分支多覆盖模型复杂,且局部覆盖不够合理的问题。针对该问题,依据特征空间中同类样本分布的连续性规律,提出基于高维空间典型样本Steiner最小树覆盖模型的一类分类算法,该算法首先对目标类训练集进行样本修剪,去除冗余信息和噪声信息,选择最具代表性的样本作为训练集,然后对保留的典型样本构建Steiner最小树覆盖模型。算法分析和仿真实验结果表明,相比最小生成树数据描述,文中提出的方法能在较低