论文部分内容阅读
火力发电机组的振动信号往往是多种振源信号的非线性混叠,由此给火力发电机组故障诊断中特征信号的提取与分析带来了强烈的干扰。针对此问题,提出了基于小波一非线性独立分量分析(independentcomponentanalysis,ICA)的火力发电机振动信号非线性盲分离与特征提取新方法。首先,利用小波去噪技术消除加性噪声的影响;然后,通过径向基函数(radialbasisfunction,RBF)神经网络,并结合线性ICA算法估计去噪信号的非线性混合解混函数,实现信号的非线性盲分离,得到火力发电机振动故障的关