论文部分内容阅读
利用支持向量机(SVM)模型对大磁暴期间Dst指数进行预报研究.以1995—2014年期间的80次大磁暴(Dst≤-100 nT)事件共2662组观测数据为研究对象,以对应时间的太阳风参数为模型输入参数,同时建立了神经网络模型和线性机模型进行对比,并利用交叉验证提高预测结果的可靠性.为比较不同模型的预测效果,选用相关系数(CC)、均方根误差(RMS)、磁暴期间Dst指数最小值预测结果的平均绝对误差以及Dst指数最小值出现时间预测结果的平均绝对误差等统计量作为对比参数.结果显示SVM模型的预测效果最好,其中