论文部分内容阅读
计算属性约简是粗糙集框架下归纳学习的关键部分.基于差别矩阵的属性约简算法是常用的属性约简算法之一.给定一个信息系统,利用该算法可以求出信息系统的所有属性约简.但是该算法需要的存储空间大,执行时间长,特别是对于大型数据库,差别矩阵的存储成为其应用的瓶颈.针对这一问题,提出了一种基于样例选取的属性约简算法,算法分为3步:首先从样例集中挑选出重要的样例;然后用选出的样例构造差别矩阵;最后计算信息系统的所有约简.实验结果显示,当处理大型数据库时,新算法能有效地减少存储空间和执行时间.