论文部分内容阅读
针对现有大多数多标签特征选择算法未能有效去除特征空间冗余特征,同时也忽略了标签差异性的现状,提出一种基于相关性分析的多标签特征选择方法,利用特征之间的相关度对特征进行分组,解决了特征之间的相关性问题。根据样本所对应的标签属性对样本做一个正负类的聚类,对于正样本和负样本所构成的正类簇和负类簇单独确定其聚类个数,并计算原特征到正负类簇中各个类中心的距离,如此便产生了标签特定特征空间;将标签共享的特征空间和标签特定特征空间融合,考虑到多个标签之间的个性和关联性,解决了标签的差异性问题。实验测试表明,相较于