论文部分内容阅读
近几年来,随着疟防工作的加强,尤其在灭疟联防推动下,我区疟疾发病率从1977年的54.60/万,下降至1983年的5.83/万,取得了较显著的成果。由于逐年发病率按一定比例下降,呈曲线关系,故本文用指数曲线配合,对我区1977~1983年疟疾发病率动态进行分析。一、利用指数曲线公式计算年平均下降率1.指数曲线基本公式:y=10~((?))式中 y 为理论值;a 和 b 为方程式的系数,可解以下联立方程求得。(?)na+∑xb=∑lgy∑xa+∑x~2b=∑xlgy2.编制曲线配合计算表,求基本数据。3.将表中数值代入,解联立方程,求出 a 和 b 值。(?)7a+28=8.597628a+140=29.9025解得:a=1.8694,b=-0.1603.
In recent years, with the strengthening of malaria prevention work, especially the malaria prevention and control, the incidence of malaria in our district dropped from 54.60 / million in 1977 to 5.83 / million in 1983, and achieved remarkable results. Due to the annual incidence rate decreased by a certain percentage, showing a curve, so this article with the exponential curve, the incidence of malaria in our district from 1977 to 1983 dynamic analysis. First, the use of exponential curve formula to calculate the annual average rate of decline 1. The basic formula of the exponential curve: y = 10 ~ ((?)) Where y is the theoretical value; a and b coefficients of the equation solvable the following simultaneous equations . (?) na + Σxb = ΣlgyΣxa + Σx ~ 2b = Σxlgy2. Compile curve with the calculation table, find the basic data. 3. Substitute the values in the table to solve the simultaneous equations and find the values of a and b. (?) 7a + 28 = 8.597628a + 140 = 29.9025 Solution: a = 1.8694, b = -0.1603.