论文部分内容阅读
本文对总质量为155Mg的1(1/2)级弹道式可回收垂直起飞空间运输系统因使用吸气式动力装置而可能增加的有效载荷进行了估算。该系统包括:作为1/2级加给130Mg结构的、可回收的涡轮-火箭-冲压组合发动机环和早期工业研究中所考虑的垂直起飞、垂直着陆的单级纯火箭运载器。高压、高循环火箭发动机有时与吸气式发动机并联使用,两种发动机均采用氢氧燃料。由于起飞质量一定和采用吸气式发动机,火箭的推力和燃烧时间,循环转换和级分离点以及100m高度上的入射角便成了主要变量。采用的是现代科学技术。弹道除加速度限制外,不受任何条件约束,所以可以采用最佳推进系统。文中给出了推进系统性能图、上升弹道和重量分配。占总质量7.8%的相对有效载荷是按吸气式发动机运载器确定的,该百分比与一次使用的二级火箭运载器相比显然是很高了。
In this paper, a 1 (1/2) class ballistic reclaim VTOL system with a total mass of 155Mg has been estimated for possible payload increases using aspirated power units. The system includes a retractable turbo-rocket-ram-combined engine ring as a 1/2 level plus 130Mg structure and a single-stage, purely rocket carrier for vertical take-off and vertical landing considered in earlier industrial studies. High-pressure, high-cycle rocket engines are sometimes used in parallel with aspirated engines, both of which use oxy-fuel. Due to the constant takeoff quality and the use of a suction-type engine, the rocket’s thrust and burning times, cycloconversion and separation points, and the incident angle at a height of 100 m became the main variables. The use of modern science and technology. In addition to the ballistic acceleration limit, without any constraints, so you can use the best propulsion system. The article gives the propulsion system performance map, rising trajectory and weight distribution. The relative payload of 7.8% of the total mass is determined on the basis of the aspirated engine carrier, which is clearly higher than the one-used two-stage rocket carrier.