论文部分内容阅读
针对目前网络入侵检测率低、误报率高的问题,提出一种基于半监督聚类云模型动态加权的入侵检测方法。由于属性对分类贡献程度不同,引入云相对贴近度的概念给出计算属性权重的方法。以半监督聚类算法为基础建立云模型,并对属性使用动态加权,通过对云模型的更新逐渐强化云分类器指导数据的分类。通过实验证明了该方法的可行性与有效性。