论文部分内容阅读
利用邻域粗糙集处理数值型数据,可以解决经典粗糙集不能直接处理数值型数据的问题,改进后的变精度邻域粗糙集可以增强抗噪声的能力。但变精度邻域粗糙集的属性约简有不同于邻域粗糙集的特性,需要考虑每个决策类的下近似分布。文中提出可以遵循平均错误率来约简属性,减少计算规模。实验证明,使用UCI数据集与其它算法进行了比较,该算法可以获得理想的结果。