论文部分内容阅读
针对传统粒子滤波算法建议分布函数的选取问题和粒子退化现象,提出一种基于马尔可夫蒙特卡洛思想的改进粒子滤波算法.使用基于比例对称采样方法选取Sigma点的无迹卡尔曼滤波,产生粒子滤波并建议分布函数;将似然分布自适应权值调整策略应用于权值选取步骤;采用系统重采样方法,加入了用来保持粒子多样性的马尔科夫链蒙特卡洛步骤.仿真结果表明,该算法的估计状态能够更好地吻合真实轨迹,在非线性、非高斯场合的估计性能较优.