论文部分内容阅读
A series of biomarkers were identified in the aliphatic and aromatic fractions of the extracts from Late Permian Dalong (大隆) and Wujiaping (吴家坪) formations in Shangsi (上寺) Section, Northeast Sichuan (四川), South China, on the basis of the analysis of gas chromatography-mass spectrometry (GC-MC). The dominance of lower-molecular-weight n-alkanes throughout the profile suggests the dominant contribution of algae and bacteria to the organics preserved in the marine section. Wujiaping Formation is characterized by the elevated contribution from algae as well as other photoautotrophs such as photosynthetic bacteria as shown by the molecular ratios of hopanes to steranes or tricyclic terpanes as well as the ratio of pristane (Pr) and phytane (Ph) to C17 and C18 n-alkanes. This is in accord with the data from the microscopic measurement on the calcareous algae. In contrast, Dalong Formation is featured by enhanced contribution from bacteria and probably terrestrial organics indicated by the enhanced C24 tetracyclic terpanes relative to tricyclic terpanes. The two formations also show a distinct discrimination in sedimentary environmental conditions including redox condition and salinity. The anoxic condition was only found in the middle of the Dalong Formation as shown by the ratios of Pr/Ph and dibenzothiophene to phenanthrene, consistent with the reported data of Mo and U. An enhanced salinity indicated by the homohopane index is observed at the shallow Wujiaping Formation. On the basis of the composition of primary productivity and the redox condition, Dalong Formation is proposed, herein, to be potential hydrocarbon source rocks in the study site. It is notable that the topmost end-Permian is characterized by a large perturbance in both the redox condition and salinity, with oxic conditions being frequently interrupted by short-term anoxia, likely showing a causal relationship with the episodic biotic crisis across the Permian-Triassic boundary.
A series of biomarkers were identified in the aliphatic and aromatic fractions of the extracts from Late Permian Dalong and Wujiaping formations in Shangsi Section, Northeast Sichuan, South China, on the basis of the analysis of gas chromatography-mass spectrometry (GC-MC). The dominance of lower-molecular-weight n-alkanes throughout the profile suggests the dominant contribution of algae and bacteria to the organics preserved in the marine section. Wujiaping Formation is characterized by the elevated contribution from algae as well as other photoautotrophs such as photosynthetic bacteria as shown by the molecular ratios of hopanes to steranes or tricyclic terpanes as well as the ratio of pristane (Pr) and phytane (Ph) to C17 and C18 n-alkanes. This is in accord with the data from the microscopic measurement on the calcareous algae. In contrast, Dalong Formation is featured by enhanced contribution from bacteria and probably terrestrial organics i ndicated by the enhanced C24 tetracyclic terpanes relative to tricyclic terpanes. The two formations also show a distinct discrimination in sedimentary environmental conditions including redox condition and salinity. The anoxic condition was only found in the middle of the Dalong Formation as shown by the ratios of Pr / Ph and dibenzothiophene to phenanthrene, consistent with the reported data of Mo and U. An enhanced salinity indicated by the homohopane index is observed at the shallow Wujiaping Formation. On the basis of the composition of primary productivity and the redox condition, Dalong Formation is proposed, herein, to be potential hydrocarbon source rocks in the study site. It is not able that the topmost end-Permian is characterized by a large perturbance in both the redox condition and salinity, with oxic conditions being frequently interrupted by short-term anoxia, likely showing a causal relationship with the episodic biotic crisis across the Permian-Triassic boundary.