论文部分内容阅读
Kalman滤波算法应用于基本Elman网络学习时,收敛速度较快.但收敛精度往往不高;而基于梯度下降的BP算法可以以很高的精度实现输入输出的非线性映射,但在极值点处收敛速度缓慢.针对上述问题,提出一种将Kalman滤波算法应用于基本Elman网络的新学习训练算法.该算法结合Kalman滤波算法和基于梯度下降的BP算法的优点来训练网络,以基本Elman网络隐层单元输出作为非线性系统的状态变量,通过Kalman滤波算法实现状态变量的快速准确跟踪.然后通过梯度下降法修正权值以保证精度.另外,在训练过程中,通过增