论文部分内容阅读
不平衡数据广泛存在于现实世界中,严重影响了传统分类器的分类性能。本文提出了随机平衡采样算法(random balance sampling,RBS),并以此为基础提出了随机平衡采样bagging算法(RBSBagging)用于解决不平衡数据集的分类问题。最后,采用6组UCI数据集对提出的分类算法进行验证,结果表明本文提出的RBSBagging算法可以较好地解决不平衡数据集的分类问题。