论文部分内容阅读
利用深度学习方法建立一种网络入侵检测模型CAL.该模型通过多重卷积提取数据流的深层特征,利用注意力机制提取代表数据流结构特点的关键特征,以提高对不同数据流特点的表达能力,并通过池化计算压缩数据,提高模型泛化能力,使用基于CuDNN加速的长短时记忆网络,在学习数据流上下文特征和时序信息的同时,加速模型收敛.在数据集UNSW-NB15上进行实验,结果表明,CAL模型的识别准确率为90.37%,多类型入侵流的识别准确率为78.94%,性能表现优于其他已有方法.