深度学习节点分配的遗传算法设计

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:liuchunxi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着深度学习技术的快速发展,模型的结构越来越复杂,需要的计算资源和存储资源也越来越多.单核计算设备通常无法满足深度学习的需求,通常将深度学习模型部署在众核和分布式计算设备上.BWDSP众核虚拟平台具有较强的计算能力和较大的存储资源,提供的并行通信接口MPIRIO适合深度学习模型的部署.本文基于BWDSP众核虚拟平台和并行通信接口MPIRIO,使用遗传算法优化深度学习模型在BWDSP虚拟平台上的部署,加速深度学习模型的训练过程.设计了静态遗传算法和动态遗传算法两种算法,优化了深度学习模型计算节点在BWDSP虚拟平台上的分配,实现了虚拟平台上的深度学习模型加速,并通过实验证明了两种遗传算法的有效性.
其他文献
针对大排量摩托车中高速行驶时前悬架系统摆振(wobble)和后悬架系统迂回摆动(weave)的综合问题,提出一种基于灵敏度分析和近似建模的多目标优化方案。建立摩托车模型并完成动力学仿真,以表征摆振和迂回摆动的前轮质心位置侧向加速度、整车质心位置横摆角速度和侧倾角速度为目标,对悬架系统参数进行灵敏度分析和近似建模,基于分析结果完成悬架系统参数的多目标优化,并利用根轨迹法对优化结果进行验证。结果表明,
为充分发挥电价对市场的调节作用,考虑用户对实时电价响应行为的差异性,将用户分为短期用户、混合用户和长期用户,基于电量电价弹性矩阵构造了3类用户的实时电价模型。在此基础上,建立了一种基于用户对实时电价响应行为的源荷协调日前调度模型。借助MATPOWER中的MOST工具包和Mosek求解器,算例分析在一个修改IEEE7机57节点系统中展开,与传统经济调度模型的比较结果证明了所提模型的有效性。此外,分析
目前对决策树(Decision Tree,DT)分类问题的相关研究已取得了很多成果,但仍存在一些问题,如决策树在寻找最优切分点时需要遍历特征的所有取值,当数据集规模较大时,递归构建决
针对现实购物场景中存在的用户偏好多样性且兴趣动态变化的问题,本文提出一种融合上下文信息的序列推荐模型(DeepSeq),通过嵌入用户提供的反馈信息深入挖掘用户的长短期潜在
针对大多数基于FPGA的加速器受限于运算资源与访存带宽,很难部署大型的神经网络这一问题,通过研究神经网络的计算特点,运用通用计算模型的思想,提出了一种指令集架构的神经网
虚拟化技术是云数据中心的核心技术之一,良好的资源管理及调度方法有利于云数据中心的虚拟资源管理从而提供快速、安全和可靠的服务.本文主要研究了工作流联合调度问题,以最小化费用开销为目的,在保证工作流完成的前提下,提出了一种二阶段的工作流联合调度算法,分别优化了工作流到虚拟机的映射和虚拟机到物理机的部署问题.该算法基于蚁群系统的核心思想,设计了相关的启发函数和信息素更新规则,形成了工作流到虚拟机的映射集合,在减少了工作流的完成时间的同时避免了陷入局部最优解;然后,针对虚拟机-物理机的部署问题,考虑了多类型虚拟机
针对RAKE(Rapid Automatic Keywords Extraction)算法在中文短文本关键词提取算法中未考虑词语语义和候选关键词过长的问题,提出一种以RAKE算法为基础的改进方法.在词语特征值计算阶段,利用词项距离、词间关系频率、共现频率构建共现矩阵,利用语境值计算公式计算每个候选关键词的特征值;按照特征值的降序输出候选关键词,若候选关键词词语个数超过n个,则利用窗口输出算法限制关键词的长度.实验表明,本文方法在中文短文本关键词提取方面相比RAKE算法及其它算法有更好的表现.
社交媒体中俄语情感信息的深入挖掘和分析,对国家制定政治、经贸和外交战略具有重要参考价值.本文针对俄语社交媒体文本口语化、不规范、形态多样等特点,提出融合俄语形态、
目前,个性化推荐系统的研究已经成为一个热门领域,其技术在各行各业得到了广泛应用.在现实生活中,人们可以划分成不同的群组,人们也经常以群组的形式一起参加各种形式的活动,
模糊C均值聚类容易受噪声数据影响,进而影响聚类准确率.鉴于此,提出了一种改进萤火虫算法的模糊聚类方法.该方法首先在萤火虫算法中引入Chebyshev映射初始化种群的分布;然后