论文部分内容阅读
针对传统基于转换的词性标注方法中规则学习速度过慢的问题提出了一种对训练语料库进行动态划分的算法。该算法根据规则之间的冲突和依赖关系对训练语料库进行动态划分,减小了搜索空间。在保证拉丁蒙文词性标注正确率的前提下提高了规则学习速度。经过10000拉丁蒙文句子语料库的对比测试,发现该方法在规则学习中所花费的时间仅为原方法的32%。