论文部分内容阅读
摘要:数学概念是抽象化的空间形式和数量关系,是反映数学对象本质属性的思维形式.数学概念也是数学基础知识和基本技能的核心.如果脱离了数学概念,便无法进行数学思维,也无法构成数学思想和数学方法.所以概念教学是教学的重要组成部分.
关键词:高中数学;数学概念;数学素养;思维品质
一、创设教学情境,引入概念
数学教材多是直接给定概念.如果教师直接“告诉”学生概念内容,就会让学生处于被动,在知识接受上有突兀感.教师应遵循高中数学新课标的要求,加强概念的引入,引导学生经历从具体实例抽象出数学概念的过程.合理设置情境,使学生积极参与教学,了解知识发生发展的背景和过程,使学生感受到学习的乐趣,这样也能使学生加深对概念的记忆和理解.笔者在教学实践中根据教学内容和学生情况等,总结了如下几种引入方式:
1.以数学史话引入概念
教学中,适当引入与数学概念相关的故事,并巧妙处理,既可激发学习兴趣,又可达到教育之目的.如教集合时联系康托;教曲线方程时讲讲笛卡尔和费马;学数列时讲数学家高斯的故事;讲二项式定理时向学生介绍杨辉等.在故事引入的同时鼓励学生勇于探索,培养他们爱科学、学科学、用科学的科学精神.
2.以实际问题引入概念
数学概念来源于实践,又服务于实践.从实际问题出发引入概念,使得抽象的数学概念贴近生活,使学生易于接受,还可以让学生认识数学概念的实际意义,增强数学的应用意识.例如可从教室内墙面与地面相交,且二面角是直角的实际问题引入“两个平面互相垂直”的概念.再如可从某商场促销,根据无雨和有雨的概率以及相应的在商场外和商场内促销带来的损失或盈利情况,如何选择促销方式的实际问题引入“离散型随机变量的期望”.
3.利用学生已有的知识经验引入概念
利用已学知识和经验,对新概念大胆猜想.如在“异面直线距离”的概念教学时,不妨先让学生回顾学过的有关距离的概念,如两点间的距离、点到直线的距离、两平行线间的距离,引导学生发现这些距离的共同特点是最短与垂直.然后启发学生思考在两条异面直线上是否也存在这样的两点,它们之间的距离最短?如果存在,有什么特征?经过探索,得出如果这两点的连线段和两条异面直线都垂直,则其长是最短的,并通过实物模型演示确认这样的线段存在.在此基础上,自然地得到“异面直线距离”的概念.在引入过程中调动了学生的积极性,培养了勇于发现、大胆猜想的精神.
二、研究概念产生本源,理清概念的历史脉络,同时注意概念教学中思维品质的培养和概念教学方法的灵活使用
1.注重概念的本源,概念产生的基础
牛顿曾说:“没有大胆的猜想,就做不出伟大的发现.”猜想作为数学想象表现形式的最高层次,属于创造性想象,是推动数学发展的强大动力,因此,在概念引入时培养学生敢于猜想的习惯,是形成数学直觉,发展数学思维,获得数学发现的基本素质,也是培养创造性思维的重要因素.每一个概念的产生都有丰富的知识背景,舍弃这些背景,直接拋给学生一连串的概念是传统教学模式中司空见惯的做法,这种做法常常使学生感到茫然,丢掉了培养学生概括能力的极好机会.由于概念本身具有的严密性、抽象性和明确规定性,传统教学中往往比较重视培养思维的逻辑性和精确性,在方式上以“告诉”为主,让学生“占有”新概念,置学生于被动地位,使思维呈依赖,这不利于创新型人才的培养.“学习最好的途径是自己去发现”.学生如能在教师创设的情景中像数学家那样去“想数学”,“经历”一遍发现、创新的过程,那么在获得概念的同时还能培养他们的创造精神.由于概念教学在整个数学教学中起着举足轻重的作用,我们应重视在数学概念教学中培养学生的创造性思维.引入是概念教学的第一步,也是形成概念的基础.概念引入时教师要鼓励学生猜想,即让学生依据已有的材料和知识做出符合一定经验与事实的推测性想象,让学生经历数学家发现新概念的最初阶段,如在立体几何中异面直线距离的概念,传统的方法是给出异面直线公垂线的概念,然后指出两垂足间的线段长就叫做两条异面直线的距离.教学可以先让学生回顾一下过去学过的有关距离的概念,如两点之间的、到线的、两平行线的有什么特点,发现共同的特点是最短与垂直,然后,启发学生思索在两条异面直线上是否也存在这样的两点,它们之间的距离是最短的?如果存在,应当有什么特征?于是经过共同探索,得出如果这两点的连线段和两条异面直线都垂直,则其长是最短的,并通过实物模型演示确认这样的线段存在,在此基础上,自然地给出异面直线距离的概念.这样做,不仅使学生得到了概括能力的训练,还尝到了数学发现的滋味,认识到距离这个概念的本质属性.
2.概念的教学中注重思维品质的培养
如何设计数学概念教学,如何在概念教学中有效地培养和开发学生的思维品质,是我们在教学中经常遇到并必须解决的问题,以下谈谈概念教学中各个阶段上培养思维能力,优化思维品质的一点粗浅体会.一是展示概念背景,培养思维的主动性,思维的主动性,表现为学生对数学充满热情,以学习数学为乐趣,在获得知识时有一种惬意的满足感.揭示了异面直线所成的角出现的背景,将数学家的思维活动暴露给学生,使学生沉浸于对新知识的期盼、探求的情境之中,积极的思维活动得以触发.二是创设求知情境,培养思维的敏捷性,思维的敏捷性表现在思考问题时,以敏锐地感知,迅速提取有效信息,进行“由此思彼”的联想,果断、简捷地解决问题.三是精确表述概念,培养思维的准确性思维的准确性是指思维符合逻辑,判断准确,概念清晰.新概念的引进解决了导引中提出的问题.学生自己参与形成和表述概念的过程培养了抽象概括能力.四是解剖新概念,培养思维的缜密性,思维的缜密性表现在抓住概念的本质特征,对概念的内涵与外延的关系全面深刻地理解,对数学知识结构的严密性和科学性能够充分认识.(两异面直线所成角的概念完全建立),在这个过程中渗透了把空间问题转化为平面问题这一化归的数学思想方法.
3.针对概念的特点采用灵活的教学方法
新知识的概念是学生初次接触或较难理解的,所以在教
学时应先列举大量具体的例子,从学生实际经验的肯定例证中,归纳出这一类事物的特征,并与已有的概念加以区别和联系,形成对这一特性的一种陈述性的定义,这就是形成一种概念的过程.在这一过程中同时要做到与学生认知结构中原有概念相互联系、作用,从而领会新概念的本质属性,获得新概念,这就是概念的同化.通过对实例的归纳和辨析对新问题的特性形成陈述性的理解,继而与原有的知识结构相互联系,完成概念形成的两个步骤.
总之,搞好数学概念的教学,使学生透彻地牢固地掌握数学概念是提高数学教学质量的关键所在,作为一个数学教师首先应该认识到数学概念教学同加强数学基础知识教学,培养学生运用数学知识解决实际问题的能力,以及发展学生逻辑思维和空间想象能力的关系,在思想上重视它,这样使我们在教学时会目的明确,方法对头,既不会造成为概念而教学,也不会在数学教学时顾此失彼.
作者单位:江苏省宿豫中学
关键词:高中数学;数学概念;数学素养;思维品质
一、创设教学情境,引入概念
数学教材多是直接给定概念.如果教师直接“告诉”学生概念内容,就会让学生处于被动,在知识接受上有突兀感.教师应遵循高中数学新课标的要求,加强概念的引入,引导学生经历从具体实例抽象出数学概念的过程.合理设置情境,使学生积极参与教学,了解知识发生发展的背景和过程,使学生感受到学习的乐趣,这样也能使学生加深对概念的记忆和理解.笔者在教学实践中根据教学内容和学生情况等,总结了如下几种引入方式:
1.以数学史话引入概念
教学中,适当引入与数学概念相关的故事,并巧妙处理,既可激发学习兴趣,又可达到教育之目的.如教集合时联系康托;教曲线方程时讲讲笛卡尔和费马;学数列时讲数学家高斯的故事;讲二项式定理时向学生介绍杨辉等.在故事引入的同时鼓励学生勇于探索,培养他们爱科学、学科学、用科学的科学精神.
2.以实际问题引入概念
数学概念来源于实践,又服务于实践.从实际问题出发引入概念,使得抽象的数学概念贴近生活,使学生易于接受,还可以让学生认识数学概念的实际意义,增强数学的应用意识.例如可从教室内墙面与地面相交,且二面角是直角的实际问题引入“两个平面互相垂直”的概念.再如可从某商场促销,根据无雨和有雨的概率以及相应的在商场外和商场内促销带来的损失或盈利情况,如何选择促销方式的实际问题引入“离散型随机变量的期望”.
3.利用学生已有的知识经验引入概念
利用已学知识和经验,对新概念大胆猜想.如在“异面直线距离”的概念教学时,不妨先让学生回顾学过的有关距离的概念,如两点间的距离、点到直线的距离、两平行线间的距离,引导学生发现这些距离的共同特点是最短与垂直.然后启发学生思考在两条异面直线上是否也存在这样的两点,它们之间的距离最短?如果存在,有什么特征?经过探索,得出如果这两点的连线段和两条异面直线都垂直,则其长是最短的,并通过实物模型演示确认这样的线段存在.在此基础上,自然地得到“异面直线距离”的概念.在引入过程中调动了学生的积极性,培养了勇于发现、大胆猜想的精神.
二、研究概念产生本源,理清概念的历史脉络,同时注意概念教学中思维品质的培养和概念教学方法的灵活使用
1.注重概念的本源,概念产生的基础
牛顿曾说:“没有大胆的猜想,就做不出伟大的发现.”猜想作为数学想象表现形式的最高层次,属于创造性想象,是推动数学发展的强大动力,因此,在概念引入时培养学生敢于猜想的习惯,是形成数学直觉,发展数学思维,获得数学发现的基本素质,也是培养创造性思维的重要因素.每一个概念的产生都有丰富的知识背景,舍弃这些背景,直接拋给学生一连串的概念是传统教学模式中司空见惯的做法,这种做法常常使学生感到茫然,丢掉了培养学生概括能力的极好机会.由于概念本身具有的严密性、抽象性和明确规定性,传统教学中往往比较重视培养思维的逻辑性和精确性,在方式上以“告诉”为主,让学生“占有”新概念,置学生于被动地位,使思维呈依赖,这不利于创新型人才的培养.“学习最好的途径是自己去发现”.学生如能在教师创设的情景中像数学家那样去“想数学”,“经历”一遍发现、创新的过程,那么在获得概念的同时还能培养他们的创造精神.由于概念教学在整个数学教学中起着举足轻重的作用,我们应重视在数学概念教学中培养学生的创造性思维.引入是概念教学的第一步,也是形成概念的基础.概念引入时教师要鼓励学生猜想,即让学生依据已有的材料和知识做出符合一定经验与事实的推测性想象,让学生经历数学家发现新概念的最初阶段,如在立体几何中异面直线距离的概念,传统的方法是给出异面直线公垂线的概念,然后指出两垂足间的线段长就叫做两条异面直线的距离.教学可以先让学生回顾一下过去学过的有关距离的概念,如两点之间的、到线的、两平行线的有什么特点,发现共同的特点是最短与垂直,然后,启发学生思索在两条异面直线上是否也存在这样的两点,它们之间的距离是最短的?如果存在,应当有什么特征?于是经过共同探索,得出如果这两点的连线段和两条异面直线都垂直,则其长是最短的,并通过实物模型演示确认这样的线段存在,在此基础上,自然地给出异面直线距离的概念.这样做,不仅使学生得到了概括能力的训练,还尝到了数学发现的滋味,认识到距离这个概念的本质属性.
2.概念的教学中注重思维品质的培养
如何设计数学概念教学,如何在概念教学中有效地培养和开发学生的思维品质,是我们在教学中经常遇到并必须解决的问题,以下谈谈概念教学中各个阶段上培养思维能力,优化思维品质的一点粗浅体会.一是展示概念背景,培养思维的主动性,思维的主动性,表现为学生对数学充满热情,以学习数学为乐趣,在获得知识时有一种惬意的满足感.揭示了异面直线所成的角出现的背景,将数学家的思维活动暴露给学生,使学生沉浸于对新知识的期盼、探求的情境之中,积极的思维活动得以触发.二是创设求知情境,培养思维的敏捷性,思维的敏捷性表现在思考问题时,以敏锐地感知,迅速提取有效信息,进行“由此思彼”的联想,果断、简捷地解决问题.三是精确表述概念,培养思维的准确性思维的准确性是指思维符合逻辑,判断准确,概念清晰.新概念的引进解决了导引中提出的问题.学生自己参与形成和表述概念的过程培养了抽象概括能力.四是解剖新概念,培养思维的缜密性,思维的缜密性表现在抓住概念的本质特征,对概念的内涵与外延的关系全面深刻地理解,对数学知识结构的严密性和科学性能够充分认识.(两异面直线所成角的概念完全建立),在这个过程中渗透了把空间问题转化为平面问题这一化归的数学思想方法.
3.针对概念的特点采用灵活的教学方法
新知识的概念是学生初次接触或较难理解的,所以在教
学时应先列举大量具体的例子,从学生实际经验的肯定例证中,归纳出这一类事物的特征,并与已有的概念加以区别和联系,形成对这一特性的一种陈述性的定义,这就是形成一种概念的过程.在这一过程中同时要做到与学生认知结构中原有概念相互联系、作用,从而领会新概念的本质属性,获得新概念,这就是概念的同化.通过对实例的归纳和辨析对新问题的特性形成陈述性的理解,继而与原有的知识结构相互联系,完成概念形成的两个步骤.
总之,搞好数学概念的教学,使学生透彻地牢固地掌握数学概念是提高数学教学质量的关键所在,作为一个数学教师首先应该认识到数学概念教学同加强数学基础知识教学,培养学生运用数学知识解决实际问题的能力,以及发展学生逻辑思维和空间想象能力的关系,在思想上重视它,这样使我们在教学时会目的明确,方法对头,既不会造成为概念而教学,也不会在数学教学时顾此失彼.
作者单位:江苏省宿豫中学