论文部分内容阅读
[摘要] 目的 探讨microRNA-34a(miR-34a)对鼻咽癌鳞状肿瘤干细胞表型的体外调控作用。 方法 利用原代培养的人类鼻咽癌细胞,采用流式分选法定量并收集ALDH(aldehyde dehydrogenase) 肿瘤干细胞。通过RT-qPCR分析miR-34与肿瘤干细胞相关因子(Sox2、Nanog、Oct3/4)在ALDH 和ALDH-细胞中的表达情况。进一步用miR-34a拟态转染评估其对鼻咽癌肿瘤干细胞标记物以及相关因子的表达调控能力。 结果 原代鼻咽癌细胞中表达ALDH的细胞约占15.43%左右。与ALDH-细胞相比,miR-34a表达水平在大多数ALDH 细胞中显著下调(-13.2 vs -4.1倍),3种肿瘤干细胞相关因子表达显著增加(最高36.8倍)。ALDH 细胞转染miR-34a拟态24 h、48 h、72 h后miR-34a mRNA水平显著增加,48 h时达峰值水平(4.49倍,P<0.01),而3种肿瘤干细胞相关因子表达水平显著降低。 结论 恢复miR-34a表达显著抑制人类原代鼻咽癌干细胞表型的形成。调控鼻咽癌和肿瘤干细胞中miR-34a的表达可能降低肿瘤治疗后的转移和复发率。
[关键词] 鼻咽癌;肿瘤干细胞;microRNA-34a;转染;拟态;醛脱氢酶
[中图分类号] R76 [文献标识码] A [文章编号] 1673-9701(2016)21-0028-05
[Abstract] Objective To investigate the role of miR-34a in regulating cancer stem cell(CSC) phenotype of nasopharyngeal squamous cell carcinoma in vitro. Methods The cells were isolated from patients with nasopharyngeal carcinoma (NPC) and cultured in vitro. Flow-cytometry was used to quantify and enrich for ALDH cancer stem cells (CSCs). RT-qPCR was performed to analyze expression patterns of miR-34a and CSC-related transcription factors(CSC-TFs) (Sox2, Nanog, Oct3/4) for ALDH and ALDH-cells. Transfection of miR-34a mimics was used to evaluate its regulatory potential for CSC marker profiles as well as CSC-TFs expression in NPC-CSC. Results The expression of ALDH was found in around 15.43% of primary NPC cells. miR-34a expression levels were significantly downregulated in the majority of ALDH cells derived from primary NPC as compared to ALDH-cells (-13.2 vs -4.1 fold). For CSC-related TF expression, ALDH cells showed a significantly increased level compared to ALDH-cells(up to 36.8 fold). miR-34a mRNA level in ALDH cells after transfection with miR-34a mimics significantly increased after 24 h, 48 h and 72 h, and the peak of miR-34a level was found 48 h post-transfection(4.49 fold, P<0.01). Transfection of miR-34a mimics significantly reduced the CSC-related TF expression level in ALDH cells. Conclusion Restoration miR-34a significantly inhibited the formation of CSC-phenotype in human primary NPC cells. Therapeutic modulation of miR-34a in NPC and CSCs may reduce the rate of metastasis and recurrence of tumors after therapy.
[Key words] Nasopharyngeal carcinoma; Cancer stem cells;microRNA-34a; Transfection; Mimics; Aldehyde dehydrogenase
近年来,通路靶向抑制治疗鼻咽癌(nasopharyngeal carcinoma, NPC)的报道已取得了一些进展,但其研究仅限于NPC细胞株,未充分考虑到肿瘤细胞株在逐代的培养过程中可能会发生某些生物学行为的改变,如细胞活性、药物敏感性等等[1]。因此,为使研究更贴近临床人体内实验,本文探讨了miR-34a和人类原代NPC干细胞生物学行为之间的关系。本研究首先采用流式分选法分选出ALDH 和ALDH-细胞,然后通过实时定量PCR检测两种细胞中CSCs相关的3种转录因子(CSC-TFs:Sox2、Nanog、Oct3/4)[2]及miR-34a的表达是否有差异,并将ALDH 细胞转染miR-34a拟态,比较不同作用时间(24 h、48 h、72 h)后miR-34a及3种转录因子表达量的变化,探讨miR-34a转染对NPC干细胞增殖是否有抑制效应。 1 材料与方法
1.1 鼻咽癌原代细胞培养
新鲜鼻咽鳞状细胞癌组织由本院耳鼻喉科提供。本研究经患者知情同意和医院伦理委员会审查通过,研究工作从2015年8月开展至今。步骤:①适量新鲜标本置于15 mL离心管中,装2 mL含10℅FBS(Gibco公司)的RPMI-1640(Gibco公司)培养基。②去除外周坏死组织,无血清培养基充分漂洗3次。③将组织块剪成0.5 mm大小,加入适量0.25℅胰酶,37℃消化8~10 min;含10℅FBS的培养基终止消化,吹打均匀后200目筛网过滤;将滤液接种于25 cm2培养瓶中,培养基3 mL,置于37℃、5%CO2、湿润空气的密闭式培养箱中培养。④96孔板单细胞克隆分离提纯细胞。
1.2 Aldefluor测定和FACS分选
Aldefluor测定试剂盒(StemCell公司)检测细胞活性;将细胞用胰蛋白酶消化制成单细胞悬液,不含Ca2 /Mg2 的PBS洗涤,重悬浮于含5 μL ALDH 底物的1 mL Aldefluor缓冲液中(1×106个细胞/mL),暗室37℃孵育30~40 min。加入ALDH抑制剂(DEAB,50 mmol/L)作为阴性对照。所有样本使用250×g离心5 min,弃上清。缓冲液洗涤细胞两次后加入ALDH缓冲液,并置于冰上待用。将细胞悬浮于PBS缓冲中,107个细胞/mL, 应用流式细胞仪Aria cell sorter进行分选(BD Biosciences公司)。
1.3 实时定量PCR
Trizol试剂(Gibco公司)分离总RNA,Poly A尾和cDNA 使用Ncode VILO miR cDNA(Invitrogen)合成。使用Chromo 4(BioRad)PRC仪及SYBR Green ERTM qPCR SuperMix试剂(Invitrogen公司)进行RT-qPCR分析。参照基因GAPDH。启动序列见表1。
1.4 microRNAs(miRs)的转染
为转染miR拟态(mimics),首先将ALDH 细胞制成单细胞悬液,然后接种于含完全培养基的6孔板中,密度8×104个细胞/孔。50 nmol/L miR-34a拟态(mimics)转染细胞,阴性对照(NC)或空白对照(MOCK)用Lipofectamine RNAiMAX 试剂(Invitrogen),且不含抗生素Opti-MEM(Invitrogen)。使用BLOCK-ITTM公司的Alexa Fluor红色荧光指示剂处理后,通过荧光显微镜对转染的细胞进行细胞计数以确定转染效率。RT-qPCR评估对ALDH 细胞转染前后miR-34a的表达及3种CSC-TFs的表达进行定量,后者分别在转染后的24 h、48 h和72 h测定。
1.5 统计学方法
数据用2△△Ct进行统计分析[3],相关CT值见表2~5。P<0.05为差异有统计学意义。
2 结果
2.1 ALDH在NPC中表达情况
流式分选ALDH 肿瘤干细胞,见图1。DEAB抑制下分采用流式分选法定性并分选ALDH 细胞。图1左显示DEAB抑制下ALDH 细胞分选情况,图1右显示无DEAB抑制剂下ALDH 细胞分选情况,R2区域显示ALDH 细胞荧光强度(原代鼻咽癌细胞中表达ALDH的细胞均占15.43%左右)。
2.2 RT-qPCR分析CSC相关转录因子(CSC-TFs:Sox2、Nanog、Oct3/4) mRNA及miR-34a的表达
RT-qPCR分析3种CSC-TFs的表达,ALDH 细胞中3种CSC-TFs的表达均显著高于ALDH-细胞(最高36.8倍)(P<0.05或P<0.01),见图2、表2;RT-qPCR分析miR-34a的表达,ALDH 细胞中miR-34a表达量显著低于ALDH-细胞(-13.2 vs -4.1倍),见图3、表3。
2.3 miR-34a超表达降低ALDH 细胞的干细胞特性
ALDH 细胞转染前后miR-34a表达量比较,转染后24 h、48 h、72 h其表达量显著增加,其中48 h时表现更明显(4.49倍),然而与对照组比较,Mock组转染前后miR-34a表达量无明显统计学差异,见图4、表4。ALDH 细胞转染后CSC相关转录因子(Nanog、Oct3/4)表达显著降低,Sox2表达无明显统计学差异,见图5、表5。
3 讨论
CSCs是肿瘤组织细胞的一小部分,它们具有无限的增殖潜能[4]。同时,CSCs是肿瘤细胞真正的“种子”,在某些肿瘤中表现出重要的生物学特性[5],它们与肿瘤的发生、致癌性、转移和复发等密切相关,并对传统的放化疗具有抵抗性[6-7]。Ginestier等[8]发现将人类乳腺癌ALDH 细胞接种于非肥胖糖尿病/重症联合免疫缺陷的小鼠体内能形成肿瘤,因此推测这些细胞可能包含CSCs。随后,利用ALDH1活性能从乳腺癌中鉴别并分离出CSCs[9]。ALDH在人类头颈部鳞状细胞癌细胞株中分离出的CSC中也呈现高表达[10]。本研究中我们采用流式分选获取具有CSC表型的ALDH 和ALDH-细胞,进一步证实了ALDH 细胞中3种CSC-TFs的表达均显著高于ALDH-细胞。
microRNAs(miRs)是非编码短单链RNAs,在正常和肿瘤细胞中调控目的mRNAs基因的翻译,频繁失调能促进肿瘤进展。miR-34a属于肿瘤抑制因子,它直接作用于p53转录后水平。在p53缺陷的人类胰腺癌细胞中,miR-34a过度表达抑制细胞增殖,细胞周期进展及自我更新,表明miR-34a可能恢复p53功能,直接作用于与CSC分化和自我更新相关的下游靶基因[11]。MiR-34a也能抑制前列腺癌[12]和乳腺癌[13]肿瘤干细胞相关特性和功能的表达。最新研究显示,miR-34a调节结肠癌干细胞的不对称分裂,从而促进肿瘤生长[14]。此外,miR-34a不仅抑制非小细胞肺癌H1299细胞株的增殖,并能促进其凋亡[15]。越来越多的研究表明,针对miRNA靶向抑制CSCs在杀灭肿瘤细胞的同时也能预防肿瘤复发[16]。本研究也证实miR-34a在ALDH 细胞中表达水平显著低于ALDH-细胞,同时miR-34a能抑制原代NPC中ALDH 细胞相关转录因子的表达。近来相关研究也表明miR-34a在头颈部CSC中下调可能诱发肿瘤生长和发生[17]。肿瘤干细胞相关因子Nanog、Oct3/4、Sox2在miRNA诱导的结肠癌细胞中均呈现高表达[18]。然而,在我们的研究中miR-34a拟态转染在增加miR-34a表达的同时,只减少ALDH 细胞中相关CSC表型Nanog、Oct3/4的表达,而Sox2表达无明显统计学差异。 本研究显示原代NPC细胞中含ALDH 细胞,即NPC干细胞。RT-qPCR分析结果显示ALDH 细胞中3种CSC-TFs的表达均显著高于ALDH-细胞,但miR-34a表达量显著低于ALDH-细胞。由此推断,miR-34a的表达在NPC干细胞中明显少于非NPC干细胞。进一步对分选出的ALDH 细胞进行miR-34a拟态转染,结果显示转染24 h、48 h、72 h后miR-34a表达量显著增加,其中48 h时表现更明显,然而对照组无明显统计学差异,表明miR-34a表达呈一定时间依赖性。同时分别对ALDH 细胞转染后3种CSC-TFs的表达进行分析,发现转染后CSC相关表达因子Nanog、Oct3/4的表达显著降低,而Sox2表达无明显统计学差异。据此研究表明,miR-34a体外抑制鼻咽癌鳞状肿瘤干细胞表型的表达。因此,使用针对相关通路靶向提高miR-34a表达从而抑制CSC的生长,将可能成为彻底清除人类肿瘤包括NPC在内的一个革新性治疗策略。
此外,研究发现在口咽部鳞状细胞癌中,人乳头瘤病毒(human papillomavirus,HPV)是否感染对细胞生物学和临床特性也起到一定作用,与HPV-DNA-细胞相比,HPV-DNA 肿瘤细胞中ALDH1A1的表达水平降低[19]。ALDH1A1作为一种肿瘤干细胞标记之一,与头颈部鳞状细胞癌的预后密切相关[20]。因此,在以后的研究中,围绕HPV感染及治疗将待进一步研究。
[参考文献]
[1] W Jiang JP,Y Zhang. The Implications of Cancer Stem Cells for Cancer Therapy[J]. Int J Mol Sci,2012,13(12):16636-16657.
[2] Chickarmane V,Peterson C. A computational model for understanding stem cell,trophectoderm and endoderm lineage determination[J]. Plo S One. 2008,3(10):e3478.
[3] Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research,2001,29(9):e45.
[4] Reya TM,Morrison SJ,Clarke MF,et al. Weissman I.L,Stem cells,cancer,and cancer stem cells[J]. Nature,2001, 414(11):105-111.
[5] Shipitsin M,Polyak K. The cancer stem cell hypothesis:In search of definitions,markers,and relevance[J]. Lab Invest,2008,88(5):459-463.
[6] Li X,Lewis MT,Huang J,et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy[J]. J Natl Cancer Inst,2008,100(9): 672-679.
[7] Diehn M,Cho RW,Lobo NA,et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells[J]. Nature,2009,458(7239):780-783.
[8] Ginestier C,Hur MH,Charafe-Jauffret E,et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J]. Cell Stem Cell,2007,1(5):555-567.
[9] Douville JB,R Balicki D. Aldh1 as a functional marker of cancer stem and progenitor cells[J]. Stem Cells Dev,2009, 18(1):17-25.
[10] Okamoto A,Chikamatsu K,Sakakura K,et al. Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck[J]. Oral Oncol,2009,45(7):633-639.
[11] Ji Q,Hao X,Zhang M,et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells[J]. Plo S One,2009,4(8):e6816.
[12] Liu C,Kelnar K,Liu B,et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44[J]. Nature Medicine,2011,17(2):211-215. [13] Park EY,Chang E,Lee EJ,et al. Targeting of miR34a-NOTCH1 Axis Reduced Breast Cancer Stemness and Chemoresistance[J]. Cancer Research,2014,74(24):7573-7582.
[14] Wang L,Bu P,Ai Y,et al. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division[J]. Elife,2016,14(5):e14620.
[15] Ma ZL,Hou PP,Li YL,et al. MicroRNA-34a inhibits the proliferation and promotes the apoptosis of non-small cell lung cancer H1299 cell line by targeting TGFbetaR2[J].Tumour Biol,2015,36(4): 2481-2490.
[16] Osaki M,Okada F,Ochiya T. miRNA therapy targeting cancer stem cells:A new paradigm for cancer treatment and prevention of tumor recurrence[J]. Ther Deliv,2015, 6(3):323-337.
[17] Sun Z,Hu W,Xu J,et al. MicroRNA-34a regulates epithelial-mesenchymal transition and cancer stem cell phenotype of head and neck squamous cell carcinoma in vitro[J]. Int J Oncol,2015,47(4): 1339-1350.
[18] Miyazaki S,Yamamoto H,Miyoshi N,et al. A Cancer Reprogramming Method Using MicroRNAs as a Novel Therapeutic Approach against Colon Cancer:Research for Reprogramming of Cancer Cells by MicroRNAs[J]. Ann Surg Oncol,2015,22(Suppl 3):1394-1401.
[19] Qian X,Wagner S,Ma C,et al. ALDH1-positive cancer stem-like cells are enriched in nodal metastases of oropharyngeal squamous cell carcinoma independent of HPV status[J]. Oncology Reports,2013,29(5):1777-1784.
[20] Qian X,Wagner S,Ma C,et al. Prognostic significance of ALDH1A1-positive cancer stem cells in patients with locally advanced, metastasized head and neck squamous cell carcinoma[J]. Journal of Cancer Research and Clinical Oncology,2014,140(7):1151-1158.
(收稿日期:2016-05-07)
[关键词] 鼻咽癌;肿瘤干细胞;microRNA-34a;转染;拟态;醛脱氢酶
[中图分类号] R76 [文献标识码] A [文章编号] 1673-9701(2016)21-0028-05
[Abstract] Objective To investigate the role of miR-34a in regulating cancer stem cell(CSC) phenotype of nasopharyngeal squamous cell carcinoma in vitro. Methods The cells were isolated from patients with nasopharyngeal carcinoma (NPC) and cultured in vitro. Flow-cytometry was used to quantify and enrich for ALDH cancer stem cells (CSCs). RT-qPCR was performed to analyze expression patterns of miR-34a and CSC-related transcription factors(CSC-TFs) (Sox2, Nanog, Oct3/4) for ALDH and ALDH-cells. Transfection of miR-34a mimics was used to evaluate its regulatory potential for CSC marker profiles as well as CSC-TFs expression in NPC-CSC. Results The expression of ALDH was found in around 15.43% of primary NPC cells. miR-34a expression levels were significantly downregulated in the majority of ALDH cells derived from primary NPC as compared to ALDH-cells (-13.2 vs -4.1 fold). For CSC-related TF expression, ALDH cells showed a significantly increased level compared to ALDH-cells(up to 36.8 fold). miR-34a mRNA level in ALDH cells after transfection with miR-34a mimics significantly increased after 24 h, 48 h and 72 h, and the peak of miR-34a level was found 48 h post-transfection(4.49 fold, P<0.01). Transfection of miR-34a mimics significantly reduced the CSC-related TF expression level in ALDH cells. Conclusion Restoration miR-34a significantly inhibited the formation of CSC-phenotype in human primary NPC cells. Therapeutic modulation of miR-34a in NPC and CSCs may reduce the rate of metastasis and recurrence of tumors after therapy.
[Key words] Nasopharyngeal carcinoma; Cancer stem cells;microRNA-34a; Transfection; Mimics; Aldehyde dehydrogenase
近年来,通路靶向抑制治疗鼻咽癌(nasopharyngeal carcinoma, NPC)的报道已取得了一些进展,但其研究仅限于NPC细胞株,未充分考虑到肿瘤细胞株在逐代的培养过程中可能会发生某些生物学行为的改变,如细胞活性、药物敏感性等等[1]。因此,为使研究更贴近临床人体内实验,本文探讨了miR-34a和人类原代NPC干细胞生物学行为之间的关系。本研究首先采用流式分选法分选出ALDH 和ALDH-细胞,然后通过实时定量PCR检测两种细胞中CSCs相关的3种转录因子(CSC-TFs:Sox2、Nanog、Oct3/4)[2]及miR-34a的表达是否有差异,并将ALDH 细胞转染miR-34a拟态,比较不同作用时间(24 h、48 h、72 h)后miR-34a及3种转录因子表达量的变化,探讨miR-34a转染对NPC干细胞增殖是否有抑制效应。 1 材料与方法
1.1 鼻咽癌原代细胞培养
新鲜鼻咽鳞状细胞癌组织由本院耳鼻喉科提供。本研究经患者知情同意和医院伦理委员会审查通过,研究工作从2015年8月开展至今。步骤:①适量新鲜标本置于15 mL离心管中,装2 mL含10℅FBS(Gibco公司)的RPMI-1640(Gibco公司)培养基。②去除外周坏死组织,无血清培养基充分漂洗3次。③将组织块剪成0.5 mm大小,加入适量0.25℅胰酶,37℃消化8~10 min;含10℅FBS的培养基终止消化,吹打均匀后200目筛网过滤;将滤液接种于25 cm2培养瓶中,培养基3 mL,置于37℃、5%CO2、湿润空气的密闭式培养箱中培养。④96孔板单细胞克隆分离提纯细胞。
1.2 Aldefluor测定和FACS分选
Aldefluor测定试剂盒(StemCell公司)检测细胞活性;将细胞用胰蛋白酶消化制成单细胞悬液,不含Ca2 /Mg2 的PBS洗涤,重悬浮于含5 μL ALDH 底物的1 mL Aldefluor缓冲液中(1×106个细胞/mL),暗室37℃孵育30~40 min。加入ALDH抑制剂(DEAB,50 mmol/L)作为阴性对照。所有样本使用250×g离心5 min,弃上清。缓冲液洗涤细胞两次后加入ALDH缓冲液,并置于冰上待用。将细胞悬浮于PBS缓冲中,107个细胞/mL, 应用流式细胞仪Aria cell sorter进行分选(BD Biosciences公司)。
1.3 实时定量PCR
Trizol试剂(Gibco公司)分离总RNA,Poly A尾和cDNA 使用Ncode VILO miR cDNA(Invitrogen)合成。使用Chromo 4(BioRad)PRC仪及SYBR Green ERTM qPCR SuperMix试剂(Invitrogen公司)进行RT-qPCR分析。参照基因GAPDH。启动序列见表1。
1.4 microRNAs(miRs)的转染
为转染miR拟态(mimics),首先将ALDH 细胞制成单细胞悬液,然后接种于含完全培养基的6孔板中,密度8×104个细胞/孔。50 nmol/L miR-34a拟态(mimics)转染细胞,阴性对照(NC)或空白对照(MOCK)用Lipofectamine RNAiMAX 试剂(Invitrogen),且不含抗生素Opti-MEM(Invitrogen)。使用BLOCK-ITTM公司的Alexa Fluor红色荧光指示剂处理后,通过荧光显微镜对转染的细胞进行细胞计数以确定转染效率。RT-qPCR评估对ALDH 细胞转染前后miR-34a的表达及3种CSC-TFs的表达进行定量,后者分别在转染后的24 h、48 h和72 h测定。
1.5 统计学方法
数据用2△△Ct进行统计分析[3],相关CT值见表2~5。P<0.05为差异有统计学意义。
2 结果
2.1 ALDH在NPC中表达情况
流式分选ALDH 肿瘤干细胞,见图1。DEAB抑制下分采用流式分选法定性并分选ALDH 细胞。图1左显示DEAB抑制下ALDH 细胞分选情况,图1右显示无DEAB抑制剂下ALDH 细胞分选情况,R2区域显示ALDH 细胞荧光强度(原代鼻咽癌细胞中表达ALDH的细胞均占15.43%左右)。
2.2 RT-qPCR分析CSC相关转录因子(CSC-TFs:Sox2、Nanog、Oct3/4) mRNA及miR-34a的表达
RT-qPCR分析3种CSC-TFs的表达,ALDH 细胞中3种CSC-TFs的表达均显著高于ALDH-细胞(最高36.8倍)(P<0.05或P<0.01),见图2、表2;RT-qPCR分析miR-34a的表达,ALDH 细胞中miR-34a表达量显著低于ALDH-细胞(-13.2 vs -4.1倍),见图3、表3。
2.3 miR-34a超表达降低ALDH 细胞的干细胞特性
ALDH 细胞转染前后miR-34a表达量比较,转染后24 h、48 h、72 h其表达量显著增加,其中48 h时表现更明显(4.49倍),然而与对照组比较,Mock组转染前后miR-34a表达量无明显统计学差异,见图4、表4。ALDH 细胞转染后CSC相关转录因子(Nanog、Oct3/4)表达显著降低,Sox2表达无明显统计学差异,见图5、表5。
3 讨论
CSCs是肿瘤组织细胞的一小部分,它们具有无限的增殖潜能[4]。同时,CSCs是肿瘤细胞真正的“种子”,在某些肿瘤中表现出重要的生物学特性[5],它们与肿瘤的发生、致癌性、转移和复发等密切相关,并对传统的放化疗具有抵抗性[6-7]。Ginestier等[8]发现将人类乳腺癌ALDH 细胞接种于非肥胖糖尿病/重症联合免疫缺陷的小鼠体内能形成肿瘤,因此推测这些细胞可能包含CSCs。随后,利用ALDH1活性能从乳腺癌中鉴别并分离出CSCs[9]。ALDH在人类头颈部鳞状细胞癌细胞株中分离出的CSC中也呈现高表达[10]。本研究中我们采用流式分选获取具有CSC表型的ALDH 和ALDH-细胞,进一步证实了ALDH 细胞中3种CSC-TFs的表达均显著高于ALDH-细胞。
microRNAs(miRs)是非编码短单链RNAs,在正常和肿瘤细胞中调控目的mRNAs基因的翻译,频繁失调能促进肿瘤进展。miR-34a属于肿瘤抑制因子,它直接作用于p53转录后水平。在p53缺陷的人类胰腺癌细胞中,miR-34a过度表达抑制细胞增殖,细胞周期进展及自我更新,表明miR-34a可能恢复p53功能,直接作用于与CSC分化和自我更新相关的下游靶基因[11]。MiR-34a也能抑制前列腺癌[12]和乳腺癌[13]肿瘤干细胞相关特性和功能的表达。最新研究显示,miR-34a调节结肠癌干细胞的不对称分裂,从而促进肿瘤生长[14]。此外,miR-34a不仅抑制非小细胞肺癌H1299细胞株的增殖,并能促进其凋亡[15]。越来越多的研究表明,针对miRNA靶向抑制CSCs在杀灭肿瘤细胞的同时也能预防肿瘤复发[16]。本研究也证实miR-34a在ALDH 细胞中表达水平显著低于ALDH-细胞,同时miR-34a能抑制原代NPC中ALDH 细胞相关转录因子的表达。近来相关研究也表明miR-34a在头颈部CSC中下调可能诱发肿瘤生长和发生[17]。肿瘤干细胞相关因子Nanog、Oct3/4、Sox2在miRNA诱导的结肠癌细胞中均呈现高表达[18]。然而,在我们的研究中miR-34a拟态转染在增加miR-34a表达的同时,只减少ALDH 细胞中相关CSC表型Nanog、Oct3/4的表达,而Sox2表达无明显统计学差异。 本研究显示原代NPC细胞中含ALDH 细胞,即NPC干细胞。RT-qPCR分析结果显示ALDH 细胞中3种CSC-TFs的表达均显著高于ALDH-细胞,但miR-34a表达量显著低于ALDH-细胞。由此推断,miR-34a的表达在NPC干细胞中明显少于非NPC干细胞。进一步对分选出的ALDH 细胞进行miR-34a拟态转染,结果显示转染24 h、48 h、72 h后miR-34a表达量显著增加,其中48 h时表现更明显,然而对照组无明显统计学差异,表明miR-34a表达呈一定时间依赖性。同时分别对ALDH 细胞转染后3种CSC-TFs的表达进行分析,发现转染后CSC相关表达因子Nanog、Oct3/4的表达显著降低,而Sox2表达无明显统计学差异。据此研究表明,miR-34a体外抑制鼻咽癌鳞状肿瘤干细胞表型的表达。因此,使用针对相关通路靶向提高miR-34a表达从而抑制CSC的生长,将可能成为彻底清除人类肿瘤包括NPC在内的一个革新性治疗策略。
此外,研究发现在口咽部鳞状细胞癌中,人乳头瘤病毒(human papillomavirus,HPV)是否感染对细胞生物学和临床特性也起到一定作用,与HPV-DNA-细胞相比,HPV-DNA 肿瘤细胞中ALDH1A1的表达水平降低[19]。ALDH1A1作为一种肿瘤干细胞标记之一,与头颈部鳞状细胞癌的预后密切相关[20]。因此,在以后的研究中,围绕HPV感染及治疗将待进一步研究。
[参考文献]
[1] W Jiang JP,Y Zhang. The Implications of Cancer Stem Cells for Cancer Therapy[J]. Int J Mol Sci,2012,13(12):16636-16657.
[2] Chickarmane V,Peterson C. A computational model for understanding stem cell,trophectoderm and endoderm lineage determination[J]. Plo S One. 2008,3(10):e3478.
[3] Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research,2001,29(9):e45.
[4] Reya TM,Morrison SJ,Clarke MF,et al. Weissman I.L,Stem cells,cancer,and cancer stem cells[J]. Nature,2001, 414(11):105-111.
[5] Shipitsin M,Polyak K. The cancer stem cell hypothesis:In search of definitions,markers,and relevance[J]. Lab Invest,2008,88(5):459-463.
[6] Li X,Lewis MT,Huang J,et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy[J]. J Natl Cancer Inst,2008,100(9): 672-679.
[7] Diehn M,Cho RW,Lobo NA,et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells[J]. Nature,2009,458(7239):780-783.
[8] Ginestier C,Hur MH,Charafe-Jauffret E,et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J]. Cell Stem Cell,2007,1(5):555-567.
[9] Douville JB,R Balicki D. Aldh1 as a functional marker of cancer stem and progenitor cells[J]. Stem Cells Dev,2009, 18(1):17-25.
[10] Okamoto A,Chikamatsu K,Sakakura K,et al. Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck[J]. Oral Oncol,2009,45(7):633-639.
[11] Ji Q,Hao X,Zhang M,et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells[J]. Plo S One,2009,4(8):e6816.
[12] Liu C,Kelnar K,Liu B,et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44[J]. Nature Medicine,2011,17(2):211-215. [13] Park EY,Chang E,Lee EJ,et al. Targeting of miR34a-NOTCH1 Axis Reduced Breast Cancer Stemness and Chemoresistance[J]. Cancer Research,2014,74(24):7573-7582.
[14] Wang L,Bu P,Ai Y,et al. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division[J]. Elife,2016,14(5):e14620.
[15] Ma ZL,Hou PP,Li YL,et al. MicroRNA-34a inhibits the proliferation and promotes the apoptosis of non-small cell lung cancer H1299 cell line by targeting TGFbetaR2[J].Tumour Biol,2015,36(4): 2481-2490.
[16] Osaki M,Okada F,Ochiya T. miRNA therapy targeting cancer stem cells:A new paradigm for cancer treatment and prevention of tumor recurrence[J]. Ther Deliv,2015, 6(3):323-337.
[17] Sun Z,Hu W,Xu J,et al. MicroRNA-34a regulates epithelial-mesenchymal transition and cancer stem cell phenotype of head and neck squamous cell carcinoma in vitro[J]. Int J Oncol,2015,47(4): 1339-1350.
[18] Miyazaki S,Yamamoto H,Miyoshi N,et al. A Cancer Reprogramming Method Using MicroRNAs as a Novel Therapeutic Approach against Colon Cancer:Research for Reprogramming of Cancer Cells by MicroRNAs[J]. Ann Surg Oncol,2015,22(Suppl 3):1394-1401.
[19] Qian X,Wagner S,Ma C,et al. ALDH1-positive cancer stem-like cells are enriched in nodal metastases of oropharyngeal squamous cell carcinoma independent of HPV status[J]. Oncology Reports,2013,29(5):1777-1784.
[20] Qian X,Wagner S,Ma C,et al. Prognostic significance of ALDH1A1-positive cancer stem cells in patients with locally advanced, metastasized head and neck squamous cell carcinoma[J]. Journal of Cancer Research and Clinical Oncology,2014,140(7):1151-1158.
(收稿日期:2016-05-07)