论文部分内容阅读
为了提高径流预测的精度和可靠性,将支持向量机应用到单因子月径流预测建模中。针对支持向量机模型参数的选择费时费力且效果差的问题,利用全局寻优的果蝇算法优化选择支持向量机的惩罚参数和核参数,提出了基于果蝇算法优化支持向量机参数的FOA-SVM预测模型,并利用新疆某站的月径流历史数据进行了仿真测试。结果表明:与GA-SVM模型和PSO-SVM模型相比,FOA-SVM模型能够提高径流预测的效率与精度。