论文部分内容阅读
支持向量机(SVM)是一种线性机器,广泛用于模式分类和非线性回归。对于很多低维非线性可分的模式,如果我们能够提取合适的高维特征向量,则模式往往在高维特征空间是线性可分的。本文利用小波包变换提取动作的特征向量,将各种动作信号映射到特征空间形成一定维数的特征向量,然后采用SVM进行动作识别。试验证明。当特征空间维数合适时,利用SVM进行动作识别效果良好。