论文部分内容阅读
摘 要:从当前国内交通的发展情况入手,分析当前国内交通发展情况发现,城市轨道交通,是一种可以有效缓解交通压力的方式,可以有效提升城市交通运行质量。在通信技术逐渐发展并不断完善的当下,DCS系统逐渐受到人们的欢迎,并得到了广泛的应用。为了全面提升CBTC系统运行质量,技术人员必须要解决无线通信干扰问题,才能保证系统的正常应用。首先介绍当前无线通信技术在CBTC系统当中的应用方式,之后对CBTC系统受到干扰的因素进行分析,最后再提出详细化的解决方式,提升工作质量。
关键词:城市轨道交通;CBTC;无线干扰;无线通信技术;移动闭塞信号系统
中图分类号:TN925 文献标识码:A 文章编号:1006-8937(2016)24-0101-02
国内通信技术在近年来得到了较为快速发展,并且各种技术的应用范围也有了一定的扩展,DCS系统作为实用性较强的技术形式,已经成功的应用到各地区城市轨道交通信号系统当中。通过分析当前工作开展的实际情况发现,CBTC不论是运营功能还是行车能力等,都要明显好于传统工作模式,安全性也得到了一致的肯定。从当前工作开展的情况来看,信号系统大多都是通过无线通信系统来构建的,导致通信干扰问题成为影响系统运行的主要问题之一。为了从根本上解决通信干扰问题,技术人员从DCS系统的角度出发,提出了一些无线通信干扰问题的解决方式。
1 DCS系统车地无线通信原理简介
1.1 车地无线通信简介
DCS系统无线部分提供802.11接入点无线LAN服务,不管列车位于哪里,都将提供两个无线LAN接入(红网和蓝网),保证证无线APs在物理上的冗余,接入点与车站交换机相连。
1.2 车地无线通信组成
主要由轨旁TRE、耦合单元、波导管、车载MRE、车载DCS天线和车载交换机等组成。
1.3 DCS冗余结构原理图
在每辆列车上均安装了两个无线调制解调器用于构成无线基站。正常情况下,每个调制解调器通过配置,设置为特定的通道。如果某一个轨旁无线接入点故障(例如,“红”通道的无线AP),此时相关的红色车载无线基站将从默认的红色无线通道切换到蓝色无线通道。如图1所示。
2 现状调查
2、5号线列车车地无线通信频繁发生受WIFI干扰故障导致列车产生紧急制动。经过一段时间的检验发现,2号线列车以及5号线列车一直在受到车地无线通信干扰的影响,日常运行出现问题,急需处理。
3 列车异常紧急制动故障进行故障列车、故障发生 区域和故障发生时间分析
通过对列车异常紧急制动故障进行故障列车、故障发生区域和故障发生时间三方面方面的统计分析。
3.1 故障列车
通过对故障列车的统计分析,我们发现所有列车均发生过异常紧急制动故障,未见规律。
3.2 故障发生区域
故障发生的区域主要集中在燕南-大剧院上行区间、大剧院-燕南下行区间和大剧院-湖贝上行区间三个大客流区间。
3.3 故障发生时间
故障发生的时间主要集中在上下班早晚高峰,尤其是下班晚高峰18:00—20:00期间。
通过以上得出的结论,我们进行现场排查,使用仪器对故障频发区域的2.4G无线信号进行监测,监测后发现现场存在大量使用频点3(2427MHz)的未知信号源,通过市场调查后发现为通信运营商推出一款移动便携式WIFI上网产品,此产品与信号系统均采用802.11g公共无线通信标准。后期在试车线测试后发现正是因为该干扰源导致列车车地通信故障。
4 移动闭塞信号系统无线通信干扰问题的解决方式
4.1 蓝网采用第3频点、红网采用第4频点
耦合单元工作在频点2、频点3和频点4,在不改造现场硬件设备的情况下,第一阶段我们保留蓝网原有频点3,并将红网工作频点调整至频点4,将红蓝网工作中心频点相隔5MHz,通过对频点的调整,降低了红蓝网同时受干扰的概率,故障数量降低至4件。
4.2 蓝网采用第2频点、红网采用第13频点
DCS无线通信红蓝网调整为频点3和频点4后,抗干扰能力有所提升。第二阶段我们通过对轨旁和车载调制解调器软件升级,并对耦合单元改造,使得我们的设备支持红蓝网工作在相隔更高频率的频点,即蓝网为频点2,红网为频点13。
4.3 窄带技术的实现
经过第二阶段改造,车地通信受干扰导致列车紧急制动故障未再发生,但带宽为20 MHz,易受外界干扰,于是我们将
5 MHz窄带技术运用到DCS无线通信领域。后续完成全线系统软件升级,实现窄带技术,将带宽20 MHz调整为5 MHz。使用
5 MHz窄带技术,即使受到同频点生成的IEEE802.11包但是不会识别,提升了抗干扰能力。
4.4 长期规划策略的制定
在未来一段时间的发展过程当中,通信技术与科学技术的发展前景都是比较广阔,并且还可以将当前无线通信干扰问题当成主要研究问题进行研究,提升城市轨道交通系统运行的正常性。可以通过使用频段等形式来实现,虽然当前我国已经在各项规定当中,对2.4 G频段进行了规定,但是作为数据传输主要通道之一,5.8 G的频道也是可以当成数据传输通道来使用的。对比来看,5.8 G的频段工作环境比较整洁,但是也存在一定的缺陷,数据的传输距离比较短,并且数据的覆盖范围相对来说也是比较狭窄的,所以在日后选择上要多关注抗干扰效果等问题。
在無线网络技术日渐发展的当下,国内的4G网络技术已经日渐纯熟,技术人员可以将这一特点作为未来无线通信干扰防范的一种措施来看待。在条件允许的情况下,技术人员可以构建专属于城市轨道交通CBTC系统的一种专属频道形式,虽然想要实现这个目标需要消耗比较长的时间,还会受到许多因素的影响。
但是一旦建成,这种模式下的轨道信号传输效率要远远好于传统工作模式。从整体情况上来看,当前国内部分地区的无线通信干扰问题已经开始严重影响轨道交通的正常运行,急需解决。但是想要在短时间内从根本上解决无线通信干扰问题显然是不现实的,需要通过长期的研究来提升无线通信干扰防范质量。
5 结 语
随着城市化进程以及市场经济的不断发展,传统交通模式已经不能承载高速发展的城市交通需求,所以需要不断的开发、不断的完善各种通信类型的交通形式。
上文以当前移动闭塞信号系统无线通信干扰问题的现状为基础,先分析了系统的工作原理,之后分析了日常工作中比较容易出现问题的环节,最后对出现问题的原因进行分析,并提出如何解决问题。希望可以通过上文提出的意见以及各种问题的解决方式,为相关技术人员奠定一定的理论基础以及实践基础,为后续工作的开展保驾护航。
参考文献:
[1] 张建明.城轨交通CBTC车-地无线通信的分析与思考[J].现代城市轨 道交通,2014,01:47-51.
[2] 罗俊杰.移动闭塞信号系统无线通信干扰问题探讨[J].中国高新技术 企业,2014,23:88-89.
[3] 宋瓷婷,赵希鹏,韩秉君,等.地铁CBTC与列车厢内便携Wi-Fi干扰共存 性能研究[J].广东通信技术,2013,01:42-49.
[4] 穆玉民.移动闭塞信号系统无线通信干扰问题探讨[J].中国科技信息,
2013,13:91.
[5] 朱光文.地铁信号系统中车-地无线通信传输的抗干扰研究[J].铁道标 准设计,2012,08:112-116.
[6] 周杭,杨小卫,程然.深圳地铁移动通信服务系统的构建和实践[J].城市 轨道交通研究,2014,11:135-137.
关键词:城市轨道交通;CBTC;无线干扰;无线通信技术;移动闭塞信号系统
中图分类号:TN925 文献标识码:A 文章编号:1006-8937(2016)24-0101-02
国内通信技术在近年来得到了较为快速发展,并且各种技术的应用范围也有了一定的扩展,DCS系统作为实用性较强的技术形式,已经成功的应用到各地区城市轨道交通信号系统当中。通过分析当前工作开展的实际情况发现,CBTC不论是运营功能还是行车能力等,都要明显好于传统工作模式,安全性也得到了一致的肯定。从当前工作开展的情况来看,信号系统大多都是通过无线通信系统来构建的,导致通信干扰问题成为影响系统运行的主要问题之一。为了从根本上解决通信干扰问题,技术人员从DCS系统的角度出发,提出了一些无线通信干扰问题的解决方式。
1 DCS系统车地无线通信原理简介
1.1 车地无线通信简介
DCS系统无线部分提供802.11接入点无线LAN服务,不管列车位于哪里,都将提供两个无线LAN接入(红网和蓝网),保证证无线APs在物理上的冗余,接入点与车站交换机相连。
1.2 车地无线通信组成
主要由轨旁TRE、耦合单元、波导管、车载MRE、车载DCS天线和车载交换机等组成。
1.3 DCS冗余结构原理图
在每辆列车上均安装了两个无线调制解调器用于构成无线基站。正常情况下,每个调制解调器通过配置,设置为特定的通道。如果某一个轨旁无线接入点故障(例如,“红”通道的无线AP),此时相关的红色车载无线基站将从默认的红色无线通道切换到蓝色无线通道。如图1所示。
2 现状调查
2、5号线列车车地无线通信频繁发生受WIFI干扰故障导致列车产生紧急制动。经过一段时间的检验发现,2号线列车以及5号线列车一直在受到车地无线通信干扰的影响,日常运行出现问题,急需处理。
3 列车异常紧急制动故障进行故障列车、故障发生 区域和故障发生时间分析
通过对列车异常紧急制动故障进行故障列车、故障发生区域和故障发生时间三方面方面的统计分析。
3.1 故障列车
通过对故障列车的统计分析,我们发现所有列车均发生过异常紧急制动故障,未见规律。
3.2 故障发生区域
故障发生的区域主要集中在燕南-大剧院上行区间、大剧院-燕南下行区间和大剧院-湖贝上行区间三个大客流区间。
3.3 故障发生时间
故障发生的时间主要集中在上下班早晚高峰,尤其是下班晚高峰18:00—20:00期间。
通过以上得出的结论,我们进行现场排查,使用仪器对故障频发区域的2.4G无线信号进行监测,监测后发现现场存在大量使用频点3(2427MHz)的未知信号源,通过市场调查后发现为通信运营商推出一款移动便携式WIFI上网产品,此产品与信号系统均采用802.11g公共无线通信标准。后期在试车线测试后发现正是因为该干扰源导致列车车地通信故障。
4 移动闭塞信号系统无线通信干扰问题的解决方式
4.1 蓝网采用第3频点、红网采用第4频点
耦合单元工作在频点2、频点3和频点4,在不改造现场硬件设备的情况下,第一阶段我们保留蓝网原有频点3,并将红网工作频点调整至频点4,将红蓝网工作中心频点相隔5MHz,通过对频点的调整,降低了红蓝网同时受干扰的概率,故障数量降低至4件。
4.2 蓝网采用第2频点、红网采用第13频点
DCS无线通信红蓝网调整为频点3和频点4后,抗干扰能力有所提升。第二阶段我们通过对轨旁和车载调制解调器软件升级,并对耦合单元改造,使得我们的设备支持红蓝网工作在相隔更高频率的频点,即蓝网为频点2,红网为频点13。
4.3 窄带技术的实现
经过第二阶段改造,车地通信受干扰导致列车紧急制动故障未再发生,但带宽为20 MHz,易受外界干扰,于是我们将
5 MHz窄带技术运用到DCS无线通信领域。后续完成全线系统软件升级,实现窄带技术,将带宽20 MHz调整为5 MHz。使用
5 MHz窄带技术,即使受到同频点生成的IEEE802.11包但是不会识别,提升了抗干扰能力。
4.4 长期规划策略的制定
在未来一段时间的发展过程当中,通信技术与科学技术的发展前景都是比较广阔,并且还可以将当前无线通信干扰问题当成主要研究问题进行研究,提升城市轨道交通系统运行的正常性。可以通过使用频段等形式来实现,虽然当前我国已经在各项规定当中,对2.4 G频段进行了规定,但是作为数据传输主要通道之一,5.8 G的频道也是可以当成数据传输通道来使用的。对比来看,5.8 G的频段工作环境比较整洁,但是也存在一定的缺陷,数据的传输距离比较短,并且数据的覆盖范围相对来说也是比较狭窄的,所以在日后选择上要多关注抗干扰效果等问题。
在無线网络技术日渐发展的当下,国内的4G网络技术已经日渐纯熟,技术人员可以将这一特点作为未来无线通信干扰防范的一种措施来看待。在条件允许的情况下,技术人员可以构建专属于城市轨道交通CBTC系统的一种专属频道形式,虽然想要实现这个目标需要消耗比较长的时间,还会受到许多因素的影响。
但是一旦建成,这种模式下的轨道信号传输效率要远远好于传统工作模式。从整体情况上来看,当前国内部分地区的无线通信干扰问题已经开始严重影响轨道交通的正常运行,急需解决。但是想要在短时间内从根本上解决无线通信干扰问题显然是不现实的,需要通过长期的研究来提升无线通信干扰防范质量。
5 结 语
随着城市化进程以及市场经济的不断发展,传统交通模式已经不能承载高速发展的城市交通需求,所以需要不断的开发、不断的完善各种通信类型的交通形式。
上文以当前移动闭塞信号系统无线通信干扰问题的现状为基础,先分析了系统的工作原理,之后分析了日常工作中比较容易出现问题的环节,最后对出现问题的原因进行分析,并提出如何解决问题。希望可以通过上文提出的意见以及各种问题的解决方式,为相关技术人员奠定一定的理论基础以及实践基础,为后续工作的开展保驾护航。
参考文献:
[1] 张建明.城轨交通CBTC车-地无线通信的分析与思考[J].现代城市轨 道交通,2014,01:47-51.
[2] 罗俊杰.移动闭塞信号系统无线通信干扰问题探讨[J].中国高新技术 企业,2014,23:88-89.
[3] 宋瓷婷,赵希鹏,韩秉君,等.地铁CBTC与列车厢内便携Wi-Fi干扰共存 性能研究[J].广东通信技术,2013,01:42-49.
[4] 穆玉民.移动闭塞信号系统无线通信干扰问题探讨[J].中国科技信息,
2013,13:91.
[5] 朱光文.地铁信号系统中车-地无线通信传输的抗干扰研究[J].铁道标 准设计,2012,08:112-116.
[6] 周杭,杨小卫,程然.深圳地铁移动通信服务系统的构建和实践[J].城市 轨道交通研究,2014,11:135-137.