论文部分内容阅读
Automatic production and precise positioning of carbon fiber reinforced plastics (FRP) require precise detection of the fiber orientations. This paper presents an automatic method for detecting fiber orienta- tions of sewed carbon fibers in the production of FRP. Detection was achieved by appropriate use of regional filling, edge detection operators, autocorrelation methods, and the Hough transformation. Regional filling was used to reduce the influence of the sewed regions, autocorrelation was used to clarify the fiber di- rections, edge detection operators were used to extract the edge features for the fiber orientations, and the Hough transformation was used to calculate the angles. Results for two kinds of carbon fiber materials show that the method is relatively quick and precise for detecting carbon fiber orientations.
Automatic production and precise positioning of carbon fiber reinforced plastics (FRP) require precise detection of the fiber orientations. This paper presents an automatic method for detecting fiber orienta- tions of sewed carbon fibers in the production of FRP. Detection was achieved by appropriate use of regional filling, edge detection operators, autocorrelation methods, and the Hough transformation. Regional filling was used to reduce the influence of the sewed regions, autocorrelation was used to clarify the fiber di- rections, edge detection operators were used to extract the edge features for the fiber orientations, and the Hough transformation was used to calculate the angles. Results for two kinds of carbon fiber materials show that the method is relatively quick and precise for detecting carbon fiber orientations.