论文部分内容阅读
有效防御病毒对工控系统的入侵是目前工控安全研究的难点问题。为了提高工控系统入侵检测的准确率,本文设计提出了一种主成分分析(PCA)与PSO-SVM相结合的工控入侵检测方法。针对工业控制系统网络数据高维的特性,该方法利用PCA对采集的网络入侵数据进行数据降维与特征提取,支持向量机(SVM)入侵检测的性能主要取决于核函数参数取值的优劣,采用粒子群算法(PSO)对支持向量机参数进行优化,以获得最优的SVM工业控制系统入侵检测模型。采用密西西比州立大学关键基础设施保护中心最新提出的工控标准数据集进行仿真实验,结果