论文部分内容阅读
摘 要 新型冠状病毒肺炎(coronavirus disease 2019, COVID-19)已形成全球大流行,至今疫情仍未得到有效控制。除肺部病变外,COVID-19还可导致患者血液、心血管、消化、神经和泌尿生殖系统等多种肺外器官/系统损伤。本文介绍成人COVID-19患者的肺外器官/系统损伤。
关键词 新型冠状病毒肺炎 新型冠状病毒 肺外器官/系统损伤
中图分类号:R512.99 文献标志码:A 文章编号:1006-1533(2021)17-0011-05
Extrapulmonary organ/systems injury of adult patients with COVID-19
ZHANG Yuyi
(Department of Severe Hepatology, Shanghai Public Health Clinical Center, Shanghai 201508, China)
ABSTRACT Coronavirus disease 2019 (COVID-19) has become a global pandemic. Up to now, the epidemic has not been effectively controlled. In addition to lung diseases, COVID-19 can also cause blood, cardiovascular, digestive, nervous and genitourinary system damage. This paper introduces the extrapulmonary organ/system injury of adult patients with COVID-19.
KEy WORDS COVID-19; SARS-CoV-2; extrapulmonary organ/systems injury
新型冠状病毒肺炎(coronavirus disease 2019, COVID-19)的病原体为严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2, SARSCoV-2)[1],其自2019年末开始暴发并形成全球大流行,至今疫情仍未得到有效控制。截至2021年5月28日,全球已有COVID-19确诊病例168 599 045例,其中死亡3 507 477例[2]。
与同由冠状病毒引起的传染病严重急性呼吸综合征和中东呼吸综合征类似,COVID-19也主要表现为发热、咳嗽、乏力、呼吸困难、咽痛、急性呼吸窘迫综合征等呼吸系统感染相关症状[3]。疫情早期的尸检发现,COVID-19患者的肺部病变明显,但病毒直接损伤肺外器官/系统的依据不足[4]。不过,之后的尸检结果逐步显示,SARS-CoV-2可侵入患者多种肺外器官/系统并引起严重的病理变化[5-6]。另外,对COVID-19死亡患者器官和组织样本中蛋白的分子病理学研究发现,与非COVID-19死亡患者相比,COVID-19死亡患者肺、脾、肝、心、肾、甲状腺和睾丸7种器官中的5 336种蛋白发生了改变,虽然只有肺部发生了实质性的纤维化病变,但蛋白组学分析提示,他们的肝、肾等器官已出现纤维化的先兆[7]。临床上也已发现,COVID-19患者存在較多的肺外器官/系统病变[8]。本文就成人COVID-19患者肺外器官/系统损伤的研究情况作一概要介绍。
1.1 病毒直接损伤
SARS-CoV-2属β冠状病毒属Sarbecovirus亚属,其受体为血管紧张素转化酶2(angiotensin-converting enzyme 2, ACE2)[1, 9],感染的靶细胞主要有呼吸道杯状细胞、纤毛上皮细胞、Ⅱ型肺泡上皮细胞、肠上皮细胞、血管内皮细胞和嗅觉神经元等[10-13]。除呼吸道和肺组织外,COVID-19还可累及肠道、血管系统和肾脏[14-15]等,病毒也有可能感染二级淋巴器官如脾脏和淋巴结等。虽然对于SARS-CoV-2是否会直接影响肺外器官/系统仍存在争议,但这些器官/系统损伤至少部分与病毒的直接作用有关。
1.2 内皮损伤、免疫功能失调和血栓性微血管病变
除肺部外,ACE2在众多器官动静脉血管内皮细胞上均有表达[16]。体内外研究发现,SARS-CoV-2的刺突蛋白可引起线粒体功能受损、ACE2表达减少、内皮型一氧化氮合酶活性降低和糖酵解增加,从而直接损伤血管内皮细胞[17]。SARS-CoV-2可直接侵入肾脏等器官和组织的内皮细胞并在其内复制,通过病毒感染内皮细胞或免疫介导的方式引起与凋亡相关的广泛内皮功能障碍,进而导致器官缺血、炎症伴相关组织水肿、高凝状态和血栓形成[18]。美国纽约西奈山医院在对100例COVID-19死亡患者进行的尸检中发现,患者体内多种器官和组织出现内皮功能障碍、广泛炎症和微血栓形成,表明内皮细胞损伤、免疫应答失调和巨噬细胞的异常激活可能在COVID-19重症化的发病机制中起着重要作用[19]。由此不难理解,为何高血压、糖尿病等能引起血管内皮损伤的基础疾病是COVID-19的高危因素了。
外周血白细胞计数正常或降低、淋巴细胞计数降低和凝血功能障碍在COVID-19患者中较为常见[8, 20]。白细胞计数升高、淋巴细胞计数降低、部分炎症标志物(如白介素-6、C-反应蛋白、铁蛋白)水平升高和D-二聚体水平升高是COVID-19重症化的危险因素[21-25]。此外,疫情早期就发现,近30%的危重症COVID-19患者存在血栓性并发症[26-27]。后续研究还显示,即便给予预防性抗凝治疗,仍有17% ~ 22%的危重症COVID-19患者出现各类血栓性事件[28-31]。一项系统评价发现,COVID-19患者的静脉血栓栓塞、深静脉血栓和肺栓塞发生率约分别为17.0%、12.1%和7.1%,ICU患者的静脉血栓栓塞发生率达27.9%[32]。 尸检结果发现,COVID-19死亡患者的脾脏普遍存在出血、梗死和萎缩,脾脏组织中白髓萎缩而红髓区相对增大,脾脏中淋巴细胞(尤其是CD4+和CD8+ T细胞)显著减少,并见局部淋巴结凋亡、巨噬细胞聚集、生发中心减少或缺如等现象[5-6, 19]。这些病理结果可以解释COVID-19患者为何多出现白细胞计数减少、淋巴细胞计数减少。
关于COVID-19患者常易出现凝血功能障碍和血栓形成的问题,研究认为可能与内皮细胞损伤、先天性免疫应答和适应性免疫应答失衡,以及巨噬细胞的异常激活有关,这些因素的共同作用及其结果会使血栓形成概率显著增高[7, 19]。
由于中东呼吸综合征可导致急性心肌炎和心力衰竭[33],故疫情早期人们就在警惕COVID-19是否也可能导致急性心肌损伤和慢性心血管系统损伤。研究发现,20% ~ 30%的COVID-19住院患者存在心肌损伤标志物水平升高(此在有心血管疾病史患者中的发生率更高,达55%),且肌钙蛋白水平升高的幅度与疾病预后相关[34-35]。另有研究报告,7% ~ 33%的COVID-19危重症患者出现双侧心室心肌病[36-37],17%的住院患者和44%的ICU患者出现心律不齐[38],6%的患者出现QTc间期延长[39]。研究还发现,合并高血压和冠心病的老年男性COVID-19患者更可能出现心肌损伤[40]。
西奈山医院的尸检结果显示,在进行心脏检查的97例COVID-19死亡患者中,有89例出现心脏增大,并多见左心室肥厚、心肌肥厚和中度到显著的冠状动脉粥样硬化[19]。另有尸检发现,从COVID-19死亡患者心肌组织中可分离出SARS-CoV-2[5, 41]。对于COVID-19患者心血管系统损伤的机制,目前还是倾向于与病毒介导的内皮细胞损伤,以及辅助性T淋巴细胞1和2参与的免疫调节功能失调所引发的细胞因子风暴有关[42]。此外,也需警惕缺血、缺氧和治疗药物引起的继发性心血管系统损伤。
COVID-19患者也较常出现消化道症状和消化系统损伤,部分患者更是以消化道症状为首发症状[8, 20]。COVID-19患者的胃肠道症状发生率为12% ~ 61%,常见症状包括食欲下降(21%)、腹泻(9%)、恶心/呕吐(7%)和腹痛(3%)等,它们的出现可能与疾病的持续时间有关,但与患者病死率没有显著的相关性[43-46]。一项系统评价则显示,COVID-19患者的肝功能异常发生率为19%,且肝功能异常的程度与疾病的严重程度相关,轻度肝转氨酶水平异常是典型表现[45]。
在COVID-19患者的胃肠道和肝脏组织细胞中均可发现SARS-CoV-2的存在[5]。尸检和组织病理学检查发现,COVID-19患者的胃肠道病变与炎症介导的损伤有关,表现为胃黏膜下血管出现弥漫性内皮炎症损伤、小肠缺血和微血管损伤[18],胃、十二指肠和直肠固有层水肿,以及浆细胞和淋巴细胞浸润[47]。一项前瞻性的临床病理学研究发现,COVID-19患者的肝脏会主要出现库普弗细胞增殖和慢性肝充血,另有脂肪变性、门脉硬化或纤维化、淋巴细胞浸润、胆管增生、胆汁淤积和急性肝细胞坏死等表现[48]。COVID-19患者的肝脏病变可能与细胞因子风暴、缺氧和治疗药物有关。
神经系统损伤在COVID-19患者中并不少见,部分患者甚至以头痛和嗅觉、味觉丧失为首发症状[8, 20]。COVID-19患者可出现肌痛/疲劳(11% ~ 44%)、头痛 (8% ~ 42%)、头晕(12%)、嗅觉丧失(5%)和味觉丧失(5%),其中重症患者的神经系统症状发生率为36%[38, 42, 49-50]。此外,COVID-19患者也可能出现脑卒中、急性脱髓鞘性疾病、脑膜脑炎和谵妄等[51-54]。
尸检和组织病理学检查发现,在COVID-19死亡患者的脑组织中,最常见的病理表现是急性或亚急性脑梗死和广泛的微血栓,新皮质和深部灰质结构中的小片状梗死也多见,此外可见点状出血样病变、血管周围脱髓鞘区小病灶和轻微局灶性急性静脉周围炎,但脑膜脑炎和病毒包涵体少见[19]。SARS-CoV-2可通过ACE2感染人的主要嗅觉神经元,致使患者嗅觉和味觉丧失[10]。
近半数的COVID-19患者出现血尿[55],高达87%的COVID-19危重症患者出现蛋白尿[56]。COVID-19患者的急性肾损伤发生率为10.7% ~ 20.1%,约3.1% ~ 5.5%的患者需接受肾脏替代治疗;COVID-19重症和危重症患者的急性肾损伤发生率更高,达42.7% ~ 63.3%,高龄、合并基础疾病(心血管疾病、高血压和糖尿病等)等是急性肾损伤的危险因素[57-59]。此外,还有研究报告,SARS-CoV-2感染可导致出现无精子症或少精子症,这可能与睾丸细胞上存在着丰富的ACE2有关[60]。
对COVID-19死亡患者的尸检和组织病理学检查发现,光学显微镜下可见弥漫性近曲小管损伤甚至坏死,电子显微镜检查显示肾小管上皮和足细胞内有成簇的冠状病毒样颗粒,ACE2在COVID-19患者肾小管上皮细胞中的表达上调[61]。COVID-19导致急性肾损伤的原因除SARS-CoV-2的直接损伤外,还可能与缺氧、凝血功能異常、治疗药物和过度通气相关的横纹肌溶解症有关[62]。
一项回顾性研究发现,在658例COVID-19患者中,有6.4%的患者在没有发热和腹泻的情况下出现了酮症,而其中64%的患者并未罹患糖尿病[63]。COVID-19导致酮症可能与SARS-CoV-2通过胰腺细胞上的ACE2直接损伤胰腺功能,以及细胞因子水平升高导致胰腺损伤和β细胞凋亡有关。 一项单中心观察性研究发现,COVID-19住院患者的皮肤症状发生率为20%,其中44%的患者在发病时即出现皮肤症状,较常见的有红斑、荨麻疹、水痘样水疱等[64]。此外,COVID-19患者亦可出现如结膜充血、结膜炎、视网膜病变等眼部症状[65-67]。
全球COVID-19疫情至今仍在肆虐。随着SARSCoV-2感染人数不断增加,越来越多的研究发现,COVID-19不仅会导致肺部损伤,而且还可引起心血管、神经、消化系统等肺外器官/系统的损伤。目前,COVID-19患者的肺外病变已受到临床重视。COVID-19已不再被视作是单纯的肺部疾病,而被认为是一种由病毒和细胞因子风暴损伤内皮细胞和血管所导致的全身性疾病,甚至有学者将其定义为一种全身性血管病变。相信在对COVID-19的本质有了较深入的了解后,医务工作者能更有的放矢地对患者进行有效的救治,以挽救更多生命,并最终战胜疫情。
参考文献
[1] Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 [J]. Nat Microbiol, 2020, 5(4): 536-544.
[2] WHO. WHO coronavirus (COVID-19) dashboard [EB/OL].(2021-05-28) [2021-05-28]. https://covid19.who.int/.
[3] Zhu Z, Lian X, Su X, et al. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses [J]. Respir Res, 2020, 21(1): 224.
[4] 劉茜, 王荣帅, 屈国强, 等. 新型冠状病毒肺炎死亡尸体系统解剖大体观察报告[J]. 法医学杂志, 2020, 36(1): 21-23.
[5] Bian XW, Yao XH, Ping YF, et al. Autopsy of COVID-19 patients in China [J]. Natl Sci Rev, 2020, 7(9): 1414-1418.
[6] Liu Q, Shi Y, Cai J, et al. Pathological changes in the lungs and lymphatic organs of 12 COVID-19 autopsy cases [J]. Natl Sci Rev, 2020, 7(12): 1868-1878.
[7] Nie X, Qian L, Sun R, et al. Multi-organ proteomic landscape of COVID-19 autopsies [J]. Cell, 2021, 184(3): 775-791.e14.
[8] 中华医学会呼吸病学分会, 中国医师协会呼吸医师分会.中国成人2019冠状病毒病的诊治与防控指南[J]. 中华医学杂志, 2021, 101(18): 1293-1356.
[9] Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin [J]. Nature, 2020, 579(7798): 270-273.
[10] Dhama K, Patel SK, Pathak M, et al. An update on SARSCoV-2/COVID-19 with particular reference to its clinical pathology, pathogenesis, immunopathology and mitigation strategies [J]. Travel Med Infect Dis, 2020, 37: 101755.
[11] Codo AC, Davanzo GG, Monteiro LB, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis [J]. Cell Metab, 2020, 32(3): 498-499.
[12] Diao B, Wang C, Wang R, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection [J]. Nat Commun, 2021, 12(1): 2506.
[13] Yang D, Chu H, Hou Y, et al. Attenuated interferon and proinflammatory response in SARS-CoV-2-infected human dendritic cells is associated with viral antagonism of STAT1 phosphorylation [J]. J Infect Dis, 2020, 222(5): 734-745. [14] Saheb Sharif-Askari N, Saheb Sharif-Askari F, Alabed M, et al. Effect of common medications on the expression of SARSCoV-2 entry receptors in kidney tissue [J]. Clin Transl Sci, 2020, 13(6): 1048-1054.
[15] Werion A, Belkhir L, Perrot M, et al. SARS-CoV-2 causes a specific dysfunction of the kidney proximal tubule [J]. Kidney Int, 2020, 98(5): 1296-1307.
[16] Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2[J]. Circulation, 2005, 111(20): 2605-2610.
[17] Lei Y, Zhang J, Schiavon CR, et al. SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE 2 [J]. Circ Res, 2021, 128(9): 1323-1326.
[18] Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19 [J]. Lancet, 2020, 395(10234): 1417-1418.
[19] Bryce C, Grimes Z, Pujadas E, et al. Pathophysiology of SARS-CoV-2: the Mount Sinai COVID-19 autopsy experience [J/OL]. Mod Pathol, 2021 Apr 1: 1-12 [2021-06-03]. https://doi.org/10.1038/s41379-021-00793-y.
[20] 國家卫生健康委. 新型冠状病毒肺炎诊疗方案(试行第八版修订版)[EB/OL]. (2021-04-14) [2021-06-03]. http:// www.gov.cn/zhengce/zhengceku/2021-04/15/5599795/files/ e9ce837932e6434db998bdbbc5d36d32.pdf.
[21] Huang G, Kovalic AJ, Graber CJ. Prognostic value of leukocytosis and lymphopenia for coronavirus disease severity [J]. Emerg Infect Dis, 2020, 26(8): 1839-1841.
[22] Zhang JJ, Cao YY, Tan G, et al. Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients [J]. Allergy, 2021, 76(2): 533-550.
[23] Fu J, Kong J, Wang W, et al. The clinical implication of dynamic neutrophil to lymphocyte ratio and D-dimer in COVID-19: a retrospective study in Suzhou China [J]. Thromb Res, 2020, 192: 3-8.
[24] Liao D, Zhou F, Luo L, et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study [J]. Lancet Haematol, 2020, 7(9): e671-e678.
[25] Henry BM, de Oliveira MHS, Benoit S, et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019(COVID-19): a meta-analysis [J]. Clin Chem Lab Med, 2020, 58(7): 1021-1028.
[26] Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia [J]. J Thromb Haemost, 2020, 18(6): 1421-1424. [27] Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19 [J]. Thromb Res, 2020, 191: 145-147.
[28] Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study [J]. Intensive Care Med, 2020, 46(6): 1089-1098.
[29] Llitjos JF, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients [J]. J Thromb Haemost, 2020, 18(7): 1743-1746.
[30] Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy [J]. Thromb Res, 2020, 191: 9-14.
[31] Tavazzi G, Civardi L, Caneva L, et al. Thrombotic events in SARS-CoV-2 patients: an urgent call for ultrasound screening[J]. Intensive Care Med, 2020, 46(6): 1121-1123.
[32] Jiménez D, García-Sanchez A, Rali P, et al. Incidence of VTE and bleeding among hospitalized patients with coronavirus disease 2019: a systematic review and meta-analysis [J]. Chest, 2021, 159(3): 1182-1196.
[33] Alhogbani T. Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus [J]. Ann Saudi Med, 2016, 36(1): 78-80.
[34] Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China [J]. JAMA Cardiol, 2020, 5(7): 802-810.
[35] Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019(COVID-19) [J]. JAMA Cardiol, 2020, 5(7): 811-818.
[36] Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China [J]. Intensive Care Med, 2020, 46(5): 846-848.
[37] Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State [J]. JAMA, 2020, 323(16): 1612-1614.
[38] Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China [J]. JAMA, 2020, 323(11): 1061-1069.
[39] Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area [J]. JAMA, 2020, 323(20): 2052-2059. [40] Liu D, Yang Q, Chen W, et al. Troponin I, a risk factor indicating more severe pneumonia among patients with novel coronavirus infected pneumonia [J]. Clin Infect Pract, 2020, 7: 100037.
[41] Wichmann D, Sperhake JP, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study [J]. Ann Intern Med, 2020, 173(4): 268-277.
[42] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [J]. Lancet, 2020, 395(10223): 497-506.
[43] Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China [J]. JAMA Intern Med, 2020, 180(7): 934-943.
[44] Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study [J]. Am J Gastroenterol, 2020, 115(5): 766-773.
[45] Mao R, Qiu Y, He JS, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis [J]. Lancet Gastroenterol Hepatol, 2020, 5(7): 667-678.
[46] Redd WD, Zhou JC, Hathorn KE, et al. Prevalence and characteristics of gastrointestinal symptoms in patients with severe acute respiratory syndrome coronavirus 2 infection in the United States: a multicenter cohort study [J]. Gastroenterology, 2020, 159(2): 765-767.e2.
[47] Xiao F, Tang M, Zheng X, et al. Evidence for gastrointestinal infection of SARS-CoV-2 [J]. Gastroenterology, 2020, 158(6): 1831-1833.e3.
[48] Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series [J]. Ann Intern Med, 2020, 173(5): 350-361.
[49] Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study [J]. Lancet, 2020, 395(10223): 507-513.
[50] Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China [J]. JAMA Neurol, 2020, 77(6): 683-690.
[51] Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection [J]. N Engl J Med, 2020, 382(23): 2268-2270.
[52] Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barrésyndrome associated with SARS-CoV-2 [J]. N Engl J Med, 2020, 382(26): 2574-2576. [53] Annweiler C, Sacco G, Salles N, et al. National French survey of coronavirus disease (COVID-19) symptoms in people aged 70 and over [J]. Clin Infect Dis, 2021, 72(3): 490-494.
[54] Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a presenting feature of COVID-19 in the young [J]. N Engl J Med, 2020, 382(20): e60.
[55] Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-19 [J]. Kidney Int, 2020, 98(1): 209-218.
[56] Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study [J]. Lancet, 2020, 395(10239): 1763-1770.
[57] Fabrizi F, Alfieri CM, Cerutti R, et al. COVID-19 and acute kidney injury: a systematic review and meta-analysis [J]. Pathogens, 2020, 9(12): 1052.
[58] Robbins-Juarez SY, Qian L, King KL, et al. Outcomes for patients with COVID-19 and acute kidney injury: a systematic review and meta-analysis [J]. Kidney Int Rep, 2020, 5(8): 1149-1160.
[59] Fu EL, Janse RJ, de Jong Y, et al. Acute kidney injury and kidney replacement therapy in COVID-19: a systematic review and meta-analysis [J]. Clin Kidney J, 2020, 13(4): 550-563.
[60] Gacci M, Coppi M, Baldi E, et al. Semen impairment and occurrence of SARS-CoV-2 virus in semen after recovery from COVID-19 [J]. Hum Reprod, 2021, 36(6): 1520-1529.
[61] Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China [J]. Kidney Int, 2020, 98(1): 219-227.
[62] Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment [J]. Kidney Int, 2019, 96(5): 1083-1099.
[63] Li J, Wang X, Chen J, et al. COVID-19 infection may cause ketosis and ketoacidosis [J]. Diabetes Obes Metab, 2020, 22(10): 1935-1941.
[64] Recalcati S. Cutaneous manifestations in COVID-19: a first perspective [J]. J Eur Acad Dermatol Venereol, 2020, 34(5): e212-e213.
[65] Marinho PM, Marcos AAA, Romano AC, et al. Retinal findings in patients with COVID-19 [J]. Lancet, 2020, 395(10237): 1610.
[66] Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China [J]. JAMA Ophthalmol, 2020, 138(5): 575-578.
[67] Cheema M, Aghazadeh H, Nazarali S, et al. Keratoconjunctivitis as the initial medical presentation of the novel coronavirus disease 2019 (COVID-19) [J]. Can J Ophthalmol, 2020, 55(4): e125-e129.
关键词 新型冠状病毒肺炎 新型冠状病毒 肺外器官/系统损伤
中图分类号:R512.99 文献标志码:A 文章编号:1006-1533(2021)17-0011-05
Extrapulmonary organ/systems injury of adult patients with COVID-19
ZHANG Yuyi
(Department of Severe Hepatology, Shanghai Public Health Clinical Center, Shanghai 201508, China)
ABSTRACT Coronavirus disease 2019 (COVID-19) has become a global pandemic. Up to now, the epidemic has not been effectively controlled. In addition to lung diseases, COVID-19 can also cause blood, cardiovascular, digestive, nervous and genitourinary system damage. This paper introduces the extrapulmonary organ/system injury of adult patients with COVID-19.
KEy WORDS COVID-19; SARS-CoV-2; extrapulmonary organ/systems injury
新型冠状病毒肺炎(coronavirus disease 2019, COVID-19)的病原体为严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2, SARSCoV-2)[1],其自2019年末开始暴发并形成全球大流行,至今疫情仍未得到有效控制。截至2021年5月28日,全球已有COVID-19确诊病例168 599 045例,其中死亡3 507 477例[2]。
与同由冠状病毒引起的传染病严重急性呼吸综合征和中东呼吸综合征类似,COVID-19也主要表现为发热、咳嗽、乏力、呼吸困难、咽痛、急性呼吸窘迫综合征等呼吸系统感染相关症状[3]。疫情早期的尸检发现,COVID-19患者的肺部病变明显,但病毒直接损伤肺外器官/系统的依据不足[4]。不过,之后的尸检结果逐步显示,SARS-CoV-2可侵入患者多种肺外器官/系统并引起严重的病理变化[5-6]。另外,对COVID-19死亡患者器官和组织样本中蛋白的分子病理学研究发现,与非COVID-19死亡患者相比,COVID-19死亡患者肺、脾、肝、心、肾、甲状腺和睾丸7种器官中的5 336种蛋白发生了改变,虽然只有肺部发生了实质性的纤维化病变,但蛋白组学分析提示,他们的肝、肾等器官已出现纤维化的先兆[7]。临床上也已发现,COVID-19患者存在較多的肺外器官/系统病变[8]。本文就成人COVID-19患者肺外器官/系统损伤的研究情况作一概要介绍。
1 肺外器官/系统损伤的发病机制
1.1 病毒直接损伤
SARS-CoV-2属β冠状病毒属Sarbecovirus亚属,其受体为血管紧张素转化酶2(angiotensin-converting enzyme 2, ACE2)[1, 9],感染的靶细胞主要有呼吸道杯状细胞、纤毛上皮细胞、Ⅱ型肺泡上皮细胞、肠上皮细胞、血管内皮细胞和嗅觉神经元等[10-13]。除呼吸道和肺组织外,COVID-19还可累及肠道、血管系统和肾脏[14-15]等,病毒也有可能感染二级淋巴器官如脾脏和淋巴结等。虽然对于SARS-CoV-2是否会直接影响肺外器官/系统仍存在争议,但这些器官/系统损伤至少部分与病毒的直接作用有关。
1.2 内皮损伤、免疫功能失调和血栓性微血管病变
除肺部外,ACE2在众多器官动静脉血管内皮细胞上均有表达[16]。体内外研究发现,SARS-CoV-2的刺突蛋白可引起线粒体功能受损、ACE2表达减少、内皮型一氧化氮合酶活性降低和糖酵解增加,从而直接损伤血管内皮细胞[17]。SARS-CoV-2可直接侵入肾脏等器官和组织的内皮细胞并在其内复制,通过病毒感染内皮细胞或免疫介导的方式引起与凋亡相关的广泛内皮功能障碍,进而导致器官缺血、炎症伴相关组织水肿、高凝状态和血栓形成[18]。美国纽约西奈山医院在对100例COVID-19死亡患者进行的尸检中发现,患者体内多种器官和组织出现内皮功能障碍、广泛炎症和微血栓形成,表明内皮细胞损伤、免疫应答失调和巨噬细胞的异常激活可能在COVID-19重症化的发病机制中起着重要作用[19]。由此不难理解,为何高血压、糖尿病等能引起血管内皮损伤的基础疾病是COVID-19的高危因素了。
2 血液系统损伤
外周血白细胞计数正常或降低、淋巴细胞计数降低和凝血功能障碍在COVID-19患者中较为常见[8, 20]。白细胞计数升高、淋巴细胞计数降低、部分炎症标志物(如白介素-6、C-反应蛋白、铁蛋白)水平升高和D-二聚体水平升高是COVID-19重症化的危险因素[21-25]。此外,疫情早期就发现,近30%的危重症COVID-19患者存在血栓性并发症[26-27]。后续研究还显示,即便给予预防性抗凝治疗,仍有17% ~ 22%的危重症COVID-19患者出现各类血栓性事件[28-31]。一项系统评价发现,COVID-19患者的静脉血栓栓塞、深静脉血栓和肺栓塞发生率约分别为17.0%、12.1%和7.1%,ICU患者的静脉血栓栓塞发生率达27.9%[32]。 尸检结果发现,COVID-19死亡患者的脾脏普遍存在出血、梗死和萎缩,脾脏组织中白髓萎缩而红髓区相对增大,脾脏中淋巴细胞(尤其是CD4+和CD8+ T细胞)显著减少,并见局部淋巴结凋亡、巨噬细胞聚集、生发中心减少或缺如等现象[5-6, 19]。这些病理结果可以解释COVID-19患者为何多出现白细胞计数减少、淋巴细胞计数减少。
关于COVID-19患者常易出现凝血功能障碍和血栓形成的问题,研究认为可能与内皮细胞损伤、先天性免疫应答和适应性免疫应答失衡,以及巨噬细胞的异常激活有关,这些因素的共同作用及其结果会使血栓形成概率显著增高[7, 19]。
3 心血管系统损伤
由于中东呼吸综合征可导致急性心肌炎和心力衰竭[33],故疫情早期人们就在警惕COVID-19是否也可能导致急性心肌损伤和慢性心血管系统损伤。研究发现,20% ~ 30%的COVID-19住院患者存在心肌损伤标志物水平升高(此在有心血管疾病史患者中的发生率更高,达55%),且肌钙蛋白水平升高的幅度与疾病预后相关[34-35]。另有研究报告,7% ~ 33%的COVID-19危重症患者出现双侧心室心肌病[36-37],17%的住院患者和44%的ICU患者出现心律不齐[38],6%的患者出现QTc间期延长[39]。研究还发现,合并高血压和冠心病的老年男性COVID-19患者更可能出现心肌损伤[40]。
西奈山医院的尸检结果显示,在进行心脏检查的97例COVID-19死亡患者中,有89例出现心脏增大,并多见左心室肥厚、心肌肥厚和中度到显著的冠状动脉粥样硬化[19]。另有尸检发现,从COVID-19死亡患者心肌组织中可分离出SARS-CoV-2[5, 41]。对于COVID-19患者心血管系统损伤的机制,目前还是倾向于与病毒介导的内皮细胞损伤,以及辅助性T淋巴细胞1和2参与的免疫调节功能失调所引发的细胞因子风暴有关[42]。此外,也需警惕缺血、缺氧和治疗药物引起的继发性心血管系统损伤。
4 消化系统损伤
COVID-19患者也较常出现消化道症状和消化系统损伤,部分患者更是以消化道症状为首发症状[8, 20]。COVID-19患者的胃肠道症状发生率为12% ~ 61%,常见症状包括食欲下降(21%)、腹泻(9%)、恶心/呕吐(7%)和腹痛(3%)等,它们的出现可能与疾病的持续时间有关,但与患者病死率没有显著的相关性[43-46]。一项系统评价则显示,COVID-19患者的肝功能异常发生率为19%,且肝功能异常的程度与疾病的严重程度相关,轻度肝转氨酶水平异常是典型表现[45]。
在COVID-19患者的胃肠道和肝脏组织细胞中均可发现SARS-CoV-2的存在[5]。尸检和组织病理学检查发现,COVID-19患者的胃肠道病变与炎症介导的损伤有关,表现为胃黏膜下血管出现弥漫性内皮炎症损伤、小肠缺血和微血管损伤[18],胃、十二指肠和直肠固有层水肿,以及浆细胞和淋巴细胞浸润[47]。一项前瞻性的临床病理学研究发现,COVID-19患者的肝脏会主要出现库普弗细胞增殖和慢性肝充血,另有脂肪变性、门脉硬化或纤维化、淋巴细胞浸润、胆管增生、胆汁淤积和急性肝细胞坏死等表现[48]。COVID-19患者的肝脏病变可能与细胞因子风暴、缺氧和治疗药物有关。
5 神经系统损伤
神经系统损伤在COVID-19患者中并不少见,部分患者甚至以头痛和嗅觉、味觉丧失为首发症状[8, 20]。COVID-19患者可出现肌痛/疲劳(11% ~ 44%)、头痛 (8% ~ 42%)、头晕(12%)、嗅觉丧失(5%)和味觉丧失(5%),其中重症患者的神经系统症状发生率为36%[38, 42, 49-50]。此外,COVID-19患者也可能出现脑卒中、急性脱髓鞘性疾病、脑膜脑炎和谵妄等[51-54]。
尸检和组织病理学检查发现,在COVID-19死亡患者的脑组织中,最常见的病理表现是急性或亚急性脑梗死和广泛的微血栓,新皮质和深部灰质结构中的小片状梗死也多见,此外可见点状出血样病变、血管周围脱髓鞘区小病灶和轻微局灶性急性静脉周围炎,但脑膜脑炎和病毒包涵体少见[19]。SARS-CoV-2可通过ACE2感染人的主要嗅觉神经元,致使患者嗅觉和味觉丧失[10]。
6 泌尿生殖系统损伤
近半数的COVID-19患者出现血尿[55],高达87%的COVID-19危重症患者出现蛋白尿[56]。COVID-19患者的急性肾损伤发生率为10.7% ~ 20.1%,约3.1% ~ 5.5%的患者需接受肾脏替代治疗;COVID-19重症和危重症患者的急性肾损伤发生率更高,达42.7% ~ 63.3%,高龄、合并基础疾病(心血管疾病、高血压和糖尿病等)等是急性肾损伤的危险因素[57-59]。此外,还有研究报告,SARS-CoV-2感染可导致出现无精子症或少精子症,这可能与睾丸细胞上存在着丰富的ACE2有关[60]。
对COVID-19死亡患者的尸检和组织病理学检查发现,光学显微镜下可见弥漫性近曲小管损伤甚至坏死,电子显微镜检查显示肾小管上皮和足细胞内有成簇的冠状病毒样颗粒,ACE2在COVID-19患者肾小管上皮细胞中的表达上调[61]。COVID-19导致急性肾损伤的原因除SARS-CoV-2的直接损伤外,还可能与缺氧、凝血功能異常、治疗药物和过度通气相关的横纹肌溶解症有关[62]。
7 其他肺外器官/系统损伤
一项回顾性研究发现,在658例COVID-19患者中,有6.4%的患者在没有发热和腹泻的情况下出现了酮症,而其中64%的患者并未罹患糖尿病[63]。COVID-19导致酮症可能与SARS-CoV-2通过胰腺细胞上的ACE2直接损伤胰腺功能,以及细胞因子水平升高导致胰腺损伤和β细胞凋亡有关。 一项单中心观察性研究发现,COVID-19住院患者的皮肤症状发生率为20%,其中44%的患者在发病时即出现皮肤症状,较常见的有红斑、荨麻疹、水痘样水疱等[64]。此外,COVID-19患者亦可出现如结膜充血、结膜炎、视网膜病变等眼部症状[65-67]。
8 结语
全球COVID-19疫情至今仍在肆虐。随着SARSCoV-2感染人数不断增加,越来越多的研究发现,COVID-19不仅会导致肺部损伤,而且还可引起心血管、神经、消化系统等肺外器官/系统的损伤。目前,COVID-19患者的肺外病变已受到临床重视。COVID-19已不再被视作是单纯的肺部疾病,而被认为是一种由病毒和细胞因子风暴损伤内皮细胞和血管所导致的全身性疾病,甚至有学者将其定义为一种全身性血管病变。相信在对COVID-19的本质有了较深入的了解后,医务工作者能更有的放矢地对患者进行有效的救治,以挽救更多生命,并最终战胜疫情。
参考文献
[1] Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 [J]. Nat Microbiol, 2020, 5(4): 536-544.
[2] WHO. WHO coronavirus (COVID-19) dashboard [EB/OL].(2021-05-28) [2021-05-28]. https://covid19.who.int/.
[3] Zhu Z, Lian X, Su X, et al. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses [J]. Respir Res, 2020, 21(1): 224.
[4] 劉茜, 王荣帅, 屈国强, 等. 新型冠状病毒肺炎死亡尸体系统解剖大体观察报告[J]. 法医学杂志, 2020, 36(1): 21-23.
[5] Bian XW, Yao XH, Ping YF, et al. Autopsy of COVID-19 patients in China [J]. Natl Sci Rev, 2020, 7(9): 1414-1418.
[6] Liu Q, Shi Y, Cai J, et al. Pathological changes in the lungs and lymphatic organs of 12 COVID-19 autopsy cases [J]. Natl Sci Rev, 2020, 7(12): 1868-1878.
[7] Nie X, Qian L, Sun R, et al. Multi-organ proteomic landscape of COVID-19 autopsies [J]. Cell, 2021, 184(3): 775-791.e14.
[8] 中华医学会呼吸病学分会, 中国医师协会呼吸医师分会.中国成人2019冠状病毒病的诊治与防控指南[J]. 中华医学杂志, 2021, 101(18): 1293-1356.
[9] Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin [J]. Nature, 2020, 579(7798): 270-273.
[10] Dhama K, Patel SK, Pathak M, et al. An update on SARSCoV-2/COVID-19 with particular reference to its clinical pathology, pathogenesis, immunopathology and mitigation strategies [J]. Travel Med Infect Dis, 2020, 37: 101755.
[11] Codo AC, Davanzo GG, Monteiro LB, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis [J]. Cell Metab, 2020, 32(3): 498-499.
[12] Diao B, Wang C, Wang R, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection [J]. Nat Commun, 2021, 12(1): 2506.
[13] Yang D, Chu H, Hou Y, et al. Attenuated interferon and proinflammatory response in SARS-CoV-2-infected human dendritic cells is associated with viral antagonism of STAT1 phosphorylation [J]. J Infect Dis, 2020, 222(5): 734-745. [14] Saheb Sharif-Askari N, Saheb Sharif-Askari F, Alabed M, et al. Effect of common medications on the expression of SARSCoV-2 entry receptors in kidney tissue [J]. Clin Transl Sci, 2020, 13(6): 1048-1054.
[15] Werion A, Belkhir L, Perrot M, et al. SARS-CoV-2 causes a specific dysfunction of the kidney proximal tubule [J]. Kidney Int, 2020, 98(5): 1296-1307.
[16] Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2[J]. Circulation, 2005, 111(20): 2605-2610.
[17] Lei Y, Zhang J, Schiavon CR, et al. SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE 2 [J]. Circ Res, 2021, 128(9): 1323-1326.
[18] Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19 [J]. Lancet, 2020, 395(10234): 1417-1418.
[19] Bryce C, Grimes Z, Pujadas E, et al. Pathophysiology of SARS-CoV-2: the Mount Sinai COVID-19 autopsy experience [J/OL]. Mod Pathol, 2021 Apr 1: 1-12 [2021-06-03]. https://doi.org/10.1038/s41379-021-00793-y.
[20] 國家卫生健康委. 新型冠状病毒肺炎诊疗方案(试行第八版修订版)[EB/OL]. (2021-04-14) [2021-06-03]. http:// www.gov.cn/zhengce/zhengceku/2021-04/15/5599795/files/ e9ce837932e6434db998bdbbc5d36d32.pdf.
[21] Huang G, Kovalic AJ, Graber CJ. Prognostic value of leukocytosis and lymphopenia for coronavirus disease severity [J]. Emerg Infect Dis, 2020, 26(8): 1839-1841.
[22] Zhang JJ, Cao YY, Tan G, et al. Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients [J]. Allergy, 2021, 76(2): 533-550.
[23] Fu J, Kong J, Wang W, et al. The clinical implication of dynamic neutrophil to lymphocyte ratio and D-dimer in COVID-19: a retrospective study in Suzhou China [J]. Thromb Res, 2020, 192: 3-8.
[24] Liao D, Zhou F, Luo L, et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study [J]. Lancet Haematol, 2020, 7(9): e671-e678.
[25] Henry BM, de Oliveira MHS, Benoit S, et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019(COVID-19): a meta-analysis [J]. Clin Chem Lab Med, 2020, 58(7): 1021-1028.
[26] Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia [J]. J Thromb Haemost, 2020, 18(6): 1421-1424. [27] Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19 [J]. Thromb Res, 2020, 191: 145-147.
[28] Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study [J]. Intensive Care Med, 2020, 46(6): 1089-1098.
[29] Llitjos JF, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients [J]. J Thromb Haemost, 2020, 18(7): 1743-1746.
[30] Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy [J]. Thromb Res, 2020, 191: 9-14.
[31] Tavazzi G, Civardi L, Caneva L, et al. Thrombotic events in SARS-CoV-2 patients: an urgent call for ultrasound screening[J]. Intensive Care Med, 2020, 46(6): 1121-1123.
[32] Jiménez D, García-Sanchez A, Rali P, et al. Incidence of VTE and bleeding among hospitalized patients with coronavirus disease 2019: a systematic review and meta-analysis [J]. Chest, 2021, 159(3): 1182-1196.
[33] Alhogbani T. Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus [J]. Ann Saudi Med, 2016, 36(1): 78-80.
[34] Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China [J]. JAMA Cardiol, 2020, 5(7): 802-810.
[35] Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019(COVID-19) [J]. JAMA Cardiol, 2020, 5(7): 811-818.
[36] Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China [J]. Intensive Care Med, 2020, 46(5): 846-848.
[37] Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State [J]. JAMA, 2020, 323(16): 1612-1614.
[38] Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China [J]. JAMA, 2020, 323(11): 1061-1069.
[39] Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area [J]. JAMA, 2020, 323(20): 2052-2059. [40] Liu D, Yang Q, Chen W, et al. Troponin I, a risk factor indicating more severe pneumonia among patients with novel coronavirus infected pneumonia [J]. Clin Infect Pract, 2020, 7: 100037.
[41] Wichmann D, Sperhake JP, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study [J]. Ann Intern Med, 2020, 173(4): 268-277.
[42] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [J]. Lancet, 2020, 395(10223): 497-506.
[43] Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China [J]. JAMA Intern Med, 2020, 180(7): 934-943.
[44] Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study [J]. Am J Gastroenterol, 2020, 115(5): 766-773.
[45] Mao R, Qiu Y, He JS, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis [J]. Lancet Gastroenterol Hepatol, 2020, 5(7): 667-678.
[46] Redd WD, Zhou JC, Hathorn KE, et al. Prevalence and characteristics of gastrointestinal symptoms in patients with severe acute respiratory syndrome coronavirus 2 infection in the United States: a multicenter cohort study [J]. Gastroenterology, 2020, 159(2): 765-767.e2.
[47] Xiao F, Tang M, Zheng X, et al. Evidence for gastrointestinal infection of SARS-CoV-2 [J]. Gastroenterology, 2020, 158(6): 1831-1833.e3.
[48] Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series [J]. Ann Intern Med, 2020, 173(5): 350-361.
[49] Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study [J]. Lancet, 2020, 395(10223): 507-513.
[50] Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China [J]. JAMA Neurol, 2020, 77(6): 683-690.
[51] Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection [J]. N Engl J Med, 2020, 382(23): 2268-2270.
[52] Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barrésyndrome associated with SARS-CoV-2 [J]. N Engl J Med, 2020, 382(26): 2574-2576. [53] Annweiler C, Sacco G, Salles N, et al. National French survey of coronavirus disease (COVID-19) symptoms in people aged 70 and over [J]. Clin Infect Dis, 2021, 72(3): 490-494.
[54] Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a presenting feature of COVID-19 in the young [J]. N Engl J Med, 2020, 382(20): e60.
[55] Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-19 [J]. Kidney Int, 2020, 98(1): 209-218.
[56] Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study [J]. Lancet, 2020, 395(10239): 1763-1770.
[57] Fabrizi F, Alfieri CM, Cerutti R, et al. COVID-19 and acute kidney injury: a systematic review and meta-analysis [J]. Pathogens, 2020, 9(12): 1052.
[58] Robbins-Juarez SY, Qian L, King KL, et al. Outcomes for patients with COVID-19 and acute kidney injury: a systematic review and meta-analysis [J]. Kidney Int Rep, 2020, 5(8): 1149-1160.
[59] Fu EL, Janse RJ, de Jong Y, et al. Acute kidney injury and kidney replacement therapy in COVID-19: a systematic review and meta-analysis [J]. Clin Kidney J, 2020, 13(4): 550-563.
[60] Gacci M, Coppi M, Baldi E, et al. Semen impairment and occurrence of SARS-CoV-2 virus in semen after recovery from COVID-19 [J]. Hum Reprod, 2021, 36(6): 1520-1529.
[61] Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China [J]. Kidney Int, 2020, 98(1): 219-227.
[62] Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment [J]. Kidney Int, 2019, 96(5): 1083-1099.
[63] Li J, Wang X, Chen J, et al. COVID-19 infection may cause ketosis and ketoacidosis [J]. Diabetes Obes Metab, 2020, 22(10): 1935-1941.
[64] Recalcati S. Cutaneous manifestations in COVID-19: a first perspective [J]. J Eur Acad Dermatol Venereol, 2020, 34(5): e212-e213.
[65] Marinho PM, Marcos AAA, Romano AC, et al. Retinal findings in patients with COVID-19 [J]. Lancet, 2020, 395(10237): 1610.
[66] Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China [J]. JAMA Ophthalmol, 2020, 138(5): 575-578.
[67] Cheema M, Aghazadeh H, Nazarali S, et al. Keratoconjunctivitis as the initial medical presentation of the novel coronavirus disease 2019 (COVID-19) [J]. Can J Ophthalmol, 2020, 55(4): e125-e129.