论文部分内容阅读
为提高基于单一特征检测算法的准确率和可靠性,提出基于多个特征的驾驶疲劳融合检测算法.从直接反映驾驶员疲劳的2个面部特征和间接反映疲劳的1个车辆行为特征2个方面对驾驶疲劳进行综合检测.该算法运用TS模糊神经网络来识别驾驶疲劳,采用减法聚类对网络进行结构辨识,确定模糊规则的条数及相关参数的初始值,并改进了粒子群优化算法对网络进行训练.仿真和实车实验表明,该算法不仅能有效改善TS模糊神经网络的收敛速度和识别精度,而且能提高驾驶疲劳的检测正确率.