论文部分内容阅读
步态识别根据人走路的姿势进行身份识别,由于人在行走时在空间呈现出的不同几何模式,单一几何特征难以全面描述步态特征,导致身份识别正确率不高。为提高身份识别的正确率,提出一种空间和频率特征模式相融合的身份识别算法。首先利用摄像机采集步态图像序列,然后分别采用极坐系和傅里叶变换提取步态空间特征和频率特征,并对两种特征进行融合,最后采用支持向量机对融合特征进行学习和分类,进行身份识别。结果表明,相对于单一步态特征为参数的身份识别算法,融合算法的身份识别正确率有了明显提高,且具有更好的稳定性。