论文部分内容阅读
摘 要:我国人口众多,水利资源丰富,水资源使用较多,因此需要大量的水利工程,进行水资源的输送,确保人们日常生活用水以及农田灌溉用水。水利工程在建筑之时首先需要进行测量,随着科技水平不断提高,尤其是现在的全球定位系统GPS不但能够提供更加精准的测距服务,其自身具有全天候、实时性、抗干扰性等众多优点,能够更加准确提供真实的速度,三维坐标以及精准视线。
关键词:GPS 技术;水利工程;测量
1 GPS工作原理
GPS系统属于全球定位技术,该技术已日趋成熟,逐渐运用于工业、军事、矿产、建筑等各个领域,目前已获得较为明显的成果。该技术具有高精度与高效率的优点,对于传统工程测量,通常需布置控制网,实施桩位放样,大多使用全站仪、测距仪等仪器。而GPS系统完全不考虑气候因素,不受地形环境影响,确保工程测量能够高精度与高效率。
首先,动态分析桩位放样,桩位精确度误差可控制于厘米级。
其次,构建放样平台。利用GPS技术,可构建放样平台,在施工平台中设置钢管桩放样,有利于减少外业测量时间。
第三,偏心检查。为确保精确度,可实现一物两用,利用桩位偏心检查技术,使工程测量效率显著提升。使用GPS技术需注意,部分测量数据不能够直接获取,必须与其它测绘仪器相结合,方可顺利完成工程测绘。
第四,GPS与传统测绘技术可有效结合,实现测量定点与定时,现阶段,通常采用静态定位技术与快速的静态定位技术。
2 GPS 技术在水利应用特点
水利工程在GPS 技术应用上,借助于GPS 卫星定位,能够实现工程的精确定位。GPS 系统主要有三个部分构成,分别是空间和用户、地面设备方面,其中空间部分主要是距离地面2000 千米高度有二十四颗卫星在轨道上,实现全天候的控制和观测,随着大气摩擦的影响,导航精度上会有一定的偏差。对于地面控制系统中,有地面监测中心和主要控制站以及地面天线等,地面控制系统主要是接收卫星发布的信号,然后测量卫星轨道以及相距距离。还有用户设备,主要是GPS信号接收机,这种设备能够精确获取卫星信号,同时经过内部的处理和计算机分析后,能夠有效获取用户坐标。
GPS 技术的适应性非常好,且能够应用到许多行业中,和一般的测量技术比较而言,其自身具备更多的高科技优点。GPS 技术能够实现高度自动化,且操作上比较简单、方便,在测量的过程中,只需一点简单动作,例如操作连接电缆线工作,放置相关仪器等,这些工作都是非常简单,即可实现GPS 技术的自动化跟踪。同时,还可以不间断的全天候提供导航服务和各种测量工作,且观测需要的时间很短,能够获得较高精度的测量数据。
3 GPS技术在水利控制测量中的应用
3.1 建立工程控制网
工程控制网作为工程管理和建设的基础,其类型及精度与工程项目的规模和性质均有密切的联系。通常情况下,工程控制网的覆盖面越小,点位密度越大,对于精确度得要求也就越高。边角网是最为常用的方法之一。采用 GPS 定位的方法构建控制网,对于点位选择的限制较少,测量精度较高,且具有时间短和费用低等诸多优点。在工程首级控制网中应用广泛。应用GPS 技术进行控制网建立,一般多采取载波相位静态差分技术,以保持毫米级得测量精度。采用GPS 技術建立施工控制网以及工程控制网均拥有十分明显的优势。道路施工和勘探控制网,具有横窄、纵长的特点。通常采取三角锁、导线的方式,并常常需要进行分段实施,以防止误差积累。采取GPS 技术,因为点与点之间没有通视的需要,能够敷设较长的三角锁,实现长距离线路坐标控制的一致性。
3.2 选点与立标
GPS水利测量时应该遵循四大原则:
1)测量点选择交通便利、周围无障碍物的地方,视野开阔保证有足够的视场;另外测量点地面基础牢固,而且易于下次找到,保存测量点的位置。
2)测量点选择在至少200米内没有大功率无线电发射源;离高压线的距离不得小于50m,以避免高压线产生的电磁场对GPS信号的干扰。
3)测量点选择在无强烈干扰卫星信号接收的物体,如大面积水域是强烈的干扰物,因此要避免大面积水域。如此选择的目的是为了避免多路径效应。
4)测量点选择时,有就测量点不选新的测量点。使用旧的测量点前对旧点的稳定性和完整性进行检查,符合要求继续使用。另外GPS网点要铺设标志性的标石。为准确标定点位,另外选择标石也有要求,选择的标石要稳定、坚固以便长久使用。预埋标石后及时标记和更新选点网图。
3.3 平面控制测量
GPS与EDM导线结合的方法对于高水头的水利工程,输水隧洞的控制是整个工程的核心。由于水利工程处位于山地狭谷这种特殊的位置,采用GPS测量往往受到地形条件的限制,不能直接在坝址、进出洞口(支洞)、厂房等关键位置上施测,而只能在附近山脊等開阔处选取合适的点位,再用EDM导线延伸至需要的位置上。在各施工区如坝址、洞口、厂房等处布点时,每处至少布设2~3个点,并使各相邻点互相通视,最好能组成一个三角形,以便检验测量成果的精度。常用的方法有:用全站仪测量两点间的平距与GPS二维约束边长进行比较,用全站仪测量单角与GPS坐标反算角度值进行比较等。
测距导线作为水利工程的地表控制是非常合适的,一方面全站仪在生产单位已得到全面的普及,同时它又有良好的测角、测距精度;另一方面,测距导线选点的自由度大,能在所需的地方布点,并能一次性完成平面和高程控制测量。为提高隧洞的贯通精度,减少坝址与厂房间控制点的数量,导线宜布设成直伸型。
3.4 拟合高程测量
水利工程中采用GPS高程测量与几何水准相比较,具有许多优越性,主要表现在电间无须通视、观测操作简单、网型连接要求不严、减轻外业作业人员的劳动强度、提高工作效率,具有良好的经济效益和社会效益。在平原或丘陵地区的一般工程测量中,完全可以用GPS高程拟合的方法代替四等水准或普通几何水准测量。在带状测区,高程拟合采用线性拟合更合适,而在面状地区,则不太合适。在山区GPS网中,只要联测适量的几何水准,利用数值拟合法求解GPS正常高,可以达到山区四等水准的要求。
GPS高程控制网的设计应根据高程异常的变化情况,对水准联测进行设计,应做到精心设计、精心观测和精心解算。联测的几何水准应分布于线型网的两端和中部。如果是区域网应均匀分布于周边和网的内部。这样布设拟合的精度最好、最合理。网型传递应采用网连式,高程的传递应采用符合方式进行高程推算。控制点的选点应尽量选择适合GPS观测的环境,以保证观测质量。减少外业的返工率和作业时间。同时作好星历预报,计划好观测时间,确保卫星数量和接收数据的质量。
4 结语
GPS 测量技术在水利工程中发挥着重要的作用,由于其具有高精度、高准度、全天候、时间短、多功能、操作简单、自动化程度高等优点,为水利工程的测量带来了极大的便利,提高了水利工程的测量效率。随着科技的发展,GPS 测量技术也会不断得到提高和改进,使其会越来越多、越来越广地运用到水利工程建设中去,从而促进我国水利工程建设的发展和完善。
参考文献
[1]李冬韩.GPS 测量在水利工程测量中的应用探析[J].河南水利与南水北调,2015(02):37-38.
[2]陈立威.探析水利建设工程的质量检测管理[J].住宅与房地产.2015(19)
关键词:GPS 技术;水利工程;测量
1 GPS工作原理
GPS系统属于全球定位技术,该技术已日趋成熟,逐渐运用于工业、军事、矿产、建筑等各个领域,目前已获得较为明显的成果。该技术具有高精度与高效率的优点,对于传统工程测量,通常需布置控制网,实施桩位放样,大多使用全站仪、测距仪等仪器。而GPS系统完全不考虑气候因素,不受地形环境影响,确保工程测量能够高精度与高效率。
首先,动态分析桩位放样,桩位精确度误差可控制于厘米级。
其次,构建放样平台。利用GPS技术,可构建放样平台,在施工平台中设置钢管桩放样,有利于减少外业测量时间。
第三,偏心检查。为确保精确度,可实现一物两用,利用桩位偏心检查技术,使工程测量效率显著提升。使用GPS技术需注意,部分测量数据不能够直接获取,必须与其它测绘仪器相结合,方可顺利完成工程测绘。
第四,GPS与传统测绘技术可有效结合,实现测量定点与定时,现阶段,通常采用静态定位技术与快速的静态定位技术。
2 GPS 技术在水利应用特点
水利工程在GPS 技术应用上,借助于GPS 卫星定位,能够实现工程的精确定位。GPS 系统主要有三个部分构成,分别是空间和用户、地面设备方面,其中空间部分主要是距离地面2000 千米高度有二十四颗卫星在轨道上,实现全天候的控制和观测,随着大气摩擦的影响,导航精度上会有一定的偏差。对于地面控制系统中,有地面监测中心和主要控制站以及地面天线等,地面控制系统主要是接收卫星发布的信号,然后测量卫星轨道以及相距距离。还有用户设备,主要是GPS信号接收机,这种设备能够精确获取卫星信号,同时经过内部的处理和计算机分析后,能夠有效获取用户坐标。
GPS 技术的适应性非常好,且能够应用到许多行业中,和一般的测量技术比较而言,其自身具备更多的高科技优点。GPS 技术能够实现高度自动化,且操作上比较简单、方便,在测量的过程中,只需一点简单动作,例如操作连接电缆线工作,放置相关仪器等,这些工作都是非常简单,即可实现GPS 技术的自动化跟踪。同时,还可以不间断的全天候提供导航服务和各种测量工作,且观测需要的时间很短,能够获得较高精度的测量数据。
3 GPS技术在水利控制测量中的应用
3.1 建立工程控制网
工程控制网作为工程管理和建设的基础,其类型及精度与工程项目的规模和性质均有密切的联系。通常情况下,工程控制网的覆盖面越小,点位密度越大,对于精确度得要求也就越高。边角网是最为常用的方法之一。采用 GPS 定位的方法构建控制网,对于点位选择的限制较少,测量精度较高,且具有时间短和费用低等诸多优点。在工程首级控制网中应用广泛。应用GPS 技术进行控制网建立,一般多采取载波相位静态差分技术,以保持毫米级得测量精度。采用GPS 技術建立施工控制网以及工程控制网均拥有十分明显的优势。道路施工和勘探控制网,具有横窄、纵长的特点。通常采取三角锁、导线的方式,并常常需要进行分段实施,以防止误差积累。采取GPS 技术,因为点与点之间没有通视的需要,能够敷设较长的三角锁,实现长距离线路坐标控制的一致性。
3.2 选点与立标
GPS水利测量时应该遵循四大原则:
1)测量点选择交通便利、周围无障碍物的地方,视野开阔保证有足够的视场;另外测量点地面基础牢固,而且易于下次找到,保存测量点的位置。
2)测量点选择在至少200米内没有大功率无线电发射源;离高压线的距离不得小于50m,以避免高压线产生的电磁场对GPS信号的干扰。
3)测量点选择在无强烈干扰卫星信号接收的物体,如大面积水域是强烈的干扰物,因此要避免大面积水域。如此选择的目的是为了避免多路径效应。
4)测量点选择时,有就测量点不选新的测量点。使用旧的测量点前对旧点的稳定性和完整性进行检查,符合要求继续使用。另外GPS网点要铺设标志性的标石。为准确标定点位,另外选择标石也有要求,选择的标石要稳定、坚固以便长久使用。预埋标石后及时标记和更新选点网图。
3.3 平面控制测量
GPS与EDM导线结合的方法对于高水头的水利工程,输水隧洞的控制是整个工程的核心。由于水利工程处位于山地狭谷这种特殊的位置,采用GPS测量往往受到地形条件的限制,不能直接在坝址、进出洞口(支洞)、厂房等关键位置上施测,而只能在附近山脊等開阔处选取合适的点位,再用EDM导线延伸至需要的位置上。在各施工区如坝址、洞口、厂房等处布点时,每处至少布设2~3个点,并使各相邻点互相通视,最好能组成一个三角形,以便检验测量成果的精度。常用的方法有:用全站仪测量两点间的平距与GPS二维约束边长进行比较,用全站仪测量单角与GPS坐标反算角度值进行比较等。
测距导线作为水利工程的地表控制是非常合适的,一方面全站仪在生产单位已得到全面的普及,同时它又有良好的测角、测距精度;另一方面,测距导线选点的自由度大,能在所需的地方布点,并能一次性完成平面和高程控制测量。为提高隧洞的贯通精度,减少坝址与厂房间控制点的数量,导线宜布设成直伸型。
3.4 拟合高程测量
水利工程中采用GPS高程测量与几何水准相比较,具有许多优越性,主要表现在电间无须通视、观测操作简单、网型连接要求不严、减轻外业作业人员的劳动强度、提高工作效率,具有良好的经济效益和社会效益。在平原或丘陵地区的一般工程测量中,完全可以用GPS高程拟合的方法代替四等水准或普通几何水准测量。在带状测区,高程拟合采用线性拟合更合适,而在面状地区,则不太合适。在山区GPS网中,只要联测适量的几何水准,利用数值拟合法求解GPS正常高,可以达到山区四等水准的要求。
GPS高程控制网的设计应根据高程异常的变化情况,对水准联测进行设计,应做到精心设计、精心观测和精心解算。联测的几何水准应分布于线型网的两端和中部。如果是区域网应均匀分布于周边和网的内部。这样布设拟合的精度最好、最合理。网型传递应采用网连式,高程的传递应采用符合方式进行高程推算。控制点的选点应尽量选择适合GPS观测的环境,以保证观测质量。减少外业的返工率和作业时间。同时作好星历预报,计划好观测时间,确保卫星数量和接收数据的质量。
4 结语
GPS 测量技术在水利工程中发挥着重要的作用,由于其具有高精度、高准度、全天候、时间短、多功能、操作简单、自动化程度高等优点,为水利工程的测量带来了极大的便利,提高了水利工程的测量效率。随着科技的发展,GPS 测量技术也会不断得到提高和改进,使其会越来越多、越来越广地运用到水利工程建设中去,从而促进我国水利工程建设的发展和完善。
参考文献
[1]李冬韩.GPS 测量在水利工程测量中的应用探析[J].河南水利与南水北调,2015(02):37-38.
[2]陈立威.探析水利建设工程的质量检测管理[J].住宅与房地产.2015(19)