论文部分内容阅读
为提高变压器油溶解气体分析法的故障诊断能力,以变压器油溶解气体作为研究对象,提出了加动量批处理小波神经网络算法。选取200组油溶解气体含量作为故障识别样本,通过多输入/多输出模式小波神经网络模型的构造,对训练过程和仿真结果进行对比分析。实验结果表明,改进的小波神经网络算法故障检测符合率高达95%,较传统的检测算法提升十几个百分点,从而极大的提高了故障诊断效率,实用性较好。