论文部分内容阅读
晚疫病是马铃薯的一种严重病害,可造成减产甚至绝收。因此马铃薯晚疫病的识别与控制对提高其产量有非常重要的意义。该文基于机器视觉技术对马铃薯叶部晚疫病进行检测,根据马铃薯叶片上晚疫病斑的颜色、纹理和形状特征参数的不同,提取叶片表面的特征参数,并建立数学模型对病害程度做出评价。在RGB、HSV颜色空间中,根据马铃薯叶片在患病早期叶片颜色发生变化且与健康叶片不同,利用颜色特征,建立马铃薯晚疫病的无病和患病模型,该模型对马铃薯患病早期的识别率为67.5%。利用灰度共生矩阵,采用纹理统计参数进行病害等级评价,用