论文部分内容阅读
[摘 要:思维是认识过程的高级阶段,是人脑对事物本质和事物之间规律性关系的反映,思维能力是培养学生各种能力的核心。初中数学的丰富内容非常有利于培养学生分析、综合、抽象、概括的能力,有利于培养他们对事物进行对比、类比、判断、推理以及跨越时空的想象力。因此,思维能力的培养对初中学生当前的学习和未来的发展均有十分重要意义。
关键词:初中数学;思维能力;培养策略]
现代教育观点认为,数学教学是思维活动的教学。因此,如何在初中数学教学中培养学生的思维能力,养成良好思维品质是教学改革的一个重要课题。
一、要教给学生数学思维的方法
孔子说“学而不思则罔,思而不学则殆”,恰当地说明了学与思的关系。在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生正确的数学思维方式。要学生善于思考,必须重视基础知识和基本技能的学习,没有扎实的双基,数学思维能力是得不到提高的。我们要坚持启发式教学,培养学生得出规律的思维能力。
数学的教学就是要启迪学生的思维,在教学过程中教师应引导学生观察发现、总结规律并掌握规律。掌握规律,是学习上一条有效的途径,它能克服干扰,使学生的认知得到改善,从而实现思维水平发展到新高度。在例题课中要把概念、规律的形成过程作为重要的教学环节。不仅要让学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使自己这样做、这样想的。这个形成过程可由教师引导学生完成,或由教师讲出自己的探寻过程。
二、培养学生的数学学习兴趣,鼓励学生独立思维
教师要精心设计每节课,要使每节课形象、生动,有意创造动人的情境,激发学生思维的火花和求知的欲望,指导学生运用已学的数学知识和方法解释实际问题。如列方程解应用题是学生普遍感到困难的内容之一,主要困难在于学生掌握不好用代数方法分析问题的思路,找不出等量关系,就列不出方程。因此,教师在教列代数式时应有意识地为列方程的教学作一些准备工作,启发同学从错综复杂的数量关系中去寻找已知与未知之间的内在联系。通过画草图列表,配以一定数量的例题和习题,使同学们能逐步寻找出等量关系,列出方程。并在此基础进行提高,指出同一题目由于思路不一样,可列出不同的方程。这样大部分同学都能较顺利地列出方程,碰到难题也会进行积极的分析思维。
鼓勵学生独立思维。初中生受经验思维的影响,思维容易雷同,缺乏探索精神。因而要多鼓励学生敢于发表不同的见解。例如比较大小,用“<”号连接下列各数1615、1211、9691、3229,大部分同学都根据以往经验,利用通分,化为同分母进行比较,因而使计算量大,但也有一些聪明的学生已看出分子96分别是16、12、32的整数倍,只要使分子相同就可作比较。对这种同学应该赞扬与肯定,促进学生思维的广阔性。
三、挖掘思维潜能
没有扎实的双基,思维能力是得不到提高的。数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力。在例题课中要把解(证)题思路的发现过程作为重要的教学环节。不仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的。这个发现过程可由教师引导学生完成,或由教师讲出自己的寻找过程。
在数学练习中,要认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力。学会从条件到结论或从结论到条件的正逆两种分析方法。对一个数学题,首先要能判断它是属于哪个范围的题目,涉及到哪些概念、定理、或计算公式。在解(证)题过程中尽量要学会数学语言、数学符号的运用。
初中数学研究对象大致可分为两类,一类是研究数量关系的,另一类是研究空间形式的,即“代数”、“几何”。要使同学们熟练地掌握一些重要的数学方法,主要有配方法、换之法、待定系数法、综合法、分析法及反证法等。
四、培养学生良好的思维品质
加强学生思维能力的训练及思维品质的培养,要训练学生思维清晰,条理清楚,遇到问题能按一定顺序去分析、思考,对复杂问题应训练学生善于于局部到整体再从整体到局部的思维方法。学生在思维过程中,要能迅速发现问题和解决问题。
要注意培养思维的严密性和灵活性。每个公式,法则、定理都有它的来龙去脉,都有使它成立的前提条件,都有它特定的使用范围,要做到言必有据。选择一些习题让学生先做,再针对学生思维中的漏洞进行教学分析。例:九年级上册第二十一章“一元二次方程”一个题目:K是什么数时,方程KX2-(2K 1)X K=0有两个不相等的实数根?很多同学只注意由△=[-(2K 1)]2-4K·K=4K2 4K 1-4K2=4K 1>0,推得K>-[14]。而如果把K>-[14]作为本题答案那就错了,因为当K=0时,原方程不是二次方程,所以在K>-[14]还得把K=0这个值排除。正确的答案应是-[14]0时,原方程有两个不相等的实数根。
在复习时要精选一些有代表性、巩固性和灵活性的习题,从各种不同角度,寻求不同的解(证)法,进行“一题多解”的训练,还可改变条件进行“一题多变”和“多题一解”的训练。这是综合运用数学知识和方法提高解题能力的重要措施。培养学生思维能力的方法是多种多样的,要使学生思维活跃,最根本的一条,就是要调动学生学习数学的积极性,教师要善于启发、引导、点拨、解疑,使学生变学为思。
总之,培养学生数学思维能力的方法是多种多样的,最根本的一条就是要调动学生学习数学的积极性,教师要善于启发、引导、点拨、解疑,使学生变学为思。当然,良好的数学思维品质不是一朝一夕形成的,但只要根据学生实际情况,坚持不懈,持之以恒,就必定会有所成效。
参考文献
[1][苏]克鲁捷茨基,赵裕春等译.中小学生数学能力心理学[M].教育科学出版社,2002.
作者简介
肖智,四川省大英县金元镇初级中学校教师,研究方向:初中数学教学。
重要荣誉:本文收录到教育理论网。
关键词:初中数学;思维能力;培养策略]
现代教育观点认为,数学教学是思维活动的教学。因此,如何在初中数学教学中培养学生的思维能力,养成良好思维品质是教学改革的一个重要课题。
一、要教给学生数学思维的方法
孔子说“学而不思则罔,思而不学则殆”,恰当地说明了学与思的关系。在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生正确的数学思维方式。要学生善于思考,必须重视基础知识和基本技能的学习,没有扎实的双基,数学思维能力是得不到提高的。我们要坚持启发式教学,培养学生得出规律的思维能力。
数学的教学就是要启迪学生的思维,在教学过程中教师应引导学生观察发现、总结规律并掌握规律。掌握规律,是学习上一条有效的途径,它能克服干扰,使学生的认知得到改善,从而实现思维水平发展到新高度。在例题课中要把概念、规律的形成过程作为重要的教学环节。不仅要让学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使自己这样做、这样想的。这个形成过程可由教师引导学生完成,或由教师讲出自己的探寻过程。
二、培养学生的数学学习兴趣,鼓励学生独立思维
教师要精心设计每节课,要使每节课形象、生动,有意创造动人的情境,激发学生思维的火花和求知的欲望,指导学生运用已学的数学知识和方法解释实际问题。如列方程解应用题是学生普遍感到困难的内容之一,主要困难在于学生掌握不好用代数方法分析问题的思路,找不出等量关系,就列不出方程。因此,教师在教列代数式时应有意识地为列方程的教学作一些准备工作,启发同学从错综复杂的数量关系中去寻找已知与未知之间的内在联系。通过画草图列表,配以一定数量的例题和习题,使同学们能逐步寻找出等量关系,列出方程。并在此基础进行提高,指出同一题目由于思路不一样,可列出不同的方程。这样大部分同学都能较顺利地列出方程,碰到难题也会进行积极的分析思维。
鼓勵学生独立思维。初中生受经验思维的影响,思维容易雷同,缺乏探索精神。因而要多鼓励学生敢于发表不同的见解。例如比较大小,用“<”号连接下列各数1615、1211、9691、3229,大部分同学都根据以往经验,利用通分,化为同分母进行比较,因而使计算量大,但也有一些聪明的学生已看出分子96分别是16、12、32的整数倍,只要使分子相同就可作比较。对这种同学应该赞扬与肯定,促进学生思维的广阔性。
三、挖掘思维潜能
没有扎实的双基,思维能力是得不到提高的。数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力。在例题课中要把解(证)题思路的发现过程作为重要的教学环节。不仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的。这个发现过程可由教师引导学生完成,或由教师讲出自己的寻找过程。
在数学练习中,要认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力。学会从条件到结论或从结论到条件的正逆两种分析方法。对一个数学题,首先要能判断它是属于哪个范围的题目,涉及到哪些概念、定理、或计算公式。在解(证)题过程中尽量要学会数学语言、数学符号的运用。
初中数学研究对象大致可分为两类,一类是研究数量关系的,另一类是研究空间形式的,即“代数”、“几何”。要使同学们熟练地掌握一些重要的数学方法,主要有配方法、换之法、待定系数法、综合法、分析法及反证法等。
四、培养学生良好的思维品质
加强学生思维能力的训练及思维品质的培养,要训练学生思维清晰,条理清楚,遇到问题能按一定顺序去分析、思考,对复杂问题应训练学生善于于局部到整体再从整体到局部的思维方法。学生在思维过程中,要能迅速发现问题和解决问题。
要注意培养思维的严密性和灵活性。每个公式,法则、定理都有它的来龙去脉,都有使它成立的前提条件,都有它特定的使用范围,要做到言必有据。选择一些习题让学生先做,再针对学生思维中的漏洞进行教学分析。例:九年级上册第二十一章“一元二次方程”一个题目:K是什么数时,方程KX2-(2K 1)X K=0有两个不相等的实数根?很多同学只注意由△=[-(2K 1)]2-4K·K=4K2 4K 1-4K2=4K 1>0,推得K>-[14]。而如果把K>-[14]作为本题答案那就错了,因为当K=0时,原方程不是二次方程,所以在K>-[14]还得把K=0这个值排除。正确的答案应是-[14]
在复习时要精选一些有代表性、巩固性和灵活性的习题,从各种不同角度,寻求不同的解(证)法,进行“一题多解”的训练,还可改变条件进行“一题多变”和“多题一解”的训练。这是综合运用数学知识和方法提高解题能力的重要措施。培养学生思维能力的方法是多种多样的,要使学生思维活跃,最根本的一条,就是要调动学生学习数学的积极性,教师要善于启发、引导、点拨、解疑,使学生变学为思。
总之,培养学生数学思维能力的方法是多种多样的,最根本的一条就是要调动学生学习数学的积极性,教师要善于启发、引导、点拨、解疑,使学生变学为思。当然,良好的数学思维品质不是一朝一夕形成的,但只要根据学生实际情况,坚持不懈,持之以恒,就必定会有所成效。
参考文献
[1][苏]克鲁捷茨基,赵裕春等译.中小学生数学能力心理学[M].教育科学出版社,2002.
作者简介
肖智,四川省大英县金元镇初级中学校教师,研究方向:初中数学教学。
重要荣誉:本文收录到教育理论网。