论文部分内容阅读
青霉素发酵过程具有较强的非线性、时变性和不确定性,发酵过程中的基质浓度、青霉素菌体浓度、产物浓度等关键生物参数难以实时在线测量,而离线化验存在时滞大的问题,难以满足实时在线控制的要求。针对这一问题,提出了一种基于核主成分分析(KPCA)与支持向量机回归(SVR)的软测量建模方法。首先,利用KPCA提取软测量输入数据空间中的非线性主成分;然后,采用SVR算法建立了可准确预测青霉素发酵过程重要参数的软测量模型。试验结果表明,与传统建模方法相比,KPCASVR软测量模型的测量精度高、跟踪性能好、泛化能力强,能