论文部分内容阅读
目的:
探讨基于光学相干断层扫描(OCT)图像的深度学习算法用于湿性年龄相关性黄斑变性(wAMD)的分型的可行性以达到辅助眼科疾病诊断的目的。
方法:数据使用2018年6月至2019年6月在宁波市眼科医院门诊确诊为wAMD患者39例(46眼)。首先将资深眼科专家提供的每例患者AMD等级作为分型算法的金标准,再使用Resnet34模型结构输出预测分型结果并与金标准对比,不断进行参数微调直到损失收敛,最终实现自动判断患者疾病等级。
结果:使用已训练的模型进行所有测试病例的预测,基于正确的病例数与所有测试病例数的比例作为算法最终的准确率,结果表明深度学习网络方法分型准确率,与普通医师wAMD分型准确率相比,高出20%。通过梯度加权的类激活映射可视化模型诊断依据可作为临床医师诊断的参考。
结论:深度学习经OCT图像数据训练后对wAMD分型的准确率明显高于普通医师对wAMD的分型准确率。基于深度学习算法的wAMD分型结果可用于疾病的辅助诊断,缓解国内专业眼科医师紧缺的现状。