论文部分内容阅读
主要探讨智慧政务平台留言热点问题的挖掘及排名问题,为解决该问题,建立了文本聚类模型,并进行了主成分分析。通过对文本数据的预处理,由词汇-文本矩阵的奇异值分解对向量语义化,潜在语义分析对文本向量进行语义空间降维,再计算文本的余弦相似度,结合K-means聚类算法建立文本聚类模型,实现热点问题的挖掘,并按热点汇编。对已挖掘的热点进行主成分分析,以热点的留言数、留言时间密集度、点赞数、反对数为评价指标。以指标的信息贡献率为权重计算主成分综合得分,以此为热度指数,对热点问题进行排名。最后给出了实例分析。