论文部分内容阅读
极端学习机作为单隐层前向神经网络的一种典型学习算法,学习速度快,泛化能力好,在函数逼近和模式分类领域都有广泛应用。本文把极端学习机的应用拓展到滤波器的设计当中,通过对数字信号处理中实例的计算机仿真,验证该算法设计的FIR滤波器具有较好的性能,能够取得理想的滤波效果,通带与阻带边界频率容易精确控制,且初始条件随机给定,算法速度快。