论文部分内容阅读
针对放顶煤中煤岩界面难以识别的问题,对采煤机滚筒振动信号进行研究,提出一种基于集成经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)与概率神经网络(Probabilistic Neural Network,PN№的煤岩界面识别方法.首先,利用EEMD对采集到的摇臂振动信号进行分解,得到一系列IMF分量,然后利用相关系数法对IMF进行筛选,提取有效分量进行能量熵特征提取,最后结合PNN识别器对割煤和割岩信号进行识别.实验研究表明.基于EEMD和PNN的煤岩界