论文部分内容阅读
非负矩阵分解(NMF)技术是高光谱像元解混领域的研究热点。为了充分利用高光谱图像中丰富的空间与光谱相关性特征,改善基于NMF的高光谱解混算法性能,提出一种结合了空间与谱间相关性分析的NMF解混算法。算法针对NMF的通用性和局部极小问题,引入并结合高光谱图像两种典型的相关性特征,具体包括:基于马尔可夫随机场(MRF)模型,建立描述相邻像元空间相关特征的约束;通过复杂度映射技术,建立描述相邻波段谱间相关(光谱分段平滑)特征的约束;并将上述两种约束同时引入NMF解混目标函数中。实验结果表明,对于一般自然地